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IA.1 Directed acyclic graph of the hierarchical model

In Figure IA.1, we present the Directed Acyclic Graph (DAG) representation of our hierarchical mixture

model described in Section 1.2 of the paper. In this graph, squares represent quantities that are fixed or

observed, e.g., prior parameters and data, while circles represent unknown model parameters that need to

be estimated. We generally use weak priors, and we perform a prior sensitivity analysis which shows that

our posteriors are quite robust to varying the priors.
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Figure IA.1: Representation of the hierarchical mixture model as a directed acyclic graph.
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IA.2 Bet types and their lottery representation

All of the bets available in the sportsbook are combinations of various types of accumulators, where an

accumulator of type k ≥ 1 is a bet that involves k individual wagers and pays money only if all k wagers

win.1 An accumulator of type k can be represented as a lottery with two possible prizes: a positive prize

that equals the stake times the product of the gross returns associated with each of the k selections minus

one, and a negative prize with absolute value equal to the stake.2 Since only unrelated selections can be

combined into accumulators of type k > 1, the probability of the positive prize in such a bet is simply the

product of the probabilities associated with each of the k selections involved.

A bet involving N ≥ 1 individual wagers may belong to one of two broad categories of bet types: it could

be (a) a permutation bet, which includes all accumulators of type k that could be constructed from the N

wagers, for some k ≤ N , i.e., it includes
(N

k

)
accumulators of type k, or (b) a full-cover bet, which includes all

accumulators of type k that could be constructed from these N wagers, for all 1 ≤ k ≤ N or 2 ≤ k ≤ N , i.e.,

it includes
∑

1≤k≤N

(N
k

)
or
∑

2≤k≤N

(N
k

)
accumulators of type 1 or 2 through N . The amount staked on permu-

tation and full-cover bets is divided evenly among the number of accumulator bets they involve. For example,

a bet that stakes amount S and involves N = 3 wagers could belong to one of the following five bet types:

• a singles bet that stakes amount S
3 on each of the

(3
1

)
= 3 accumulators of type 1, each of which

corresponds to one of the wagers and pays money if that wager wins,

• a doubles bet that stakes amount S
3 on each of the

(3
2

)
= 3 accumulators of type 2, each of which corre-

sponds to one of the pairwise combinations of wagers and pays money if both wagers in the combination

win,

• a treble bet that stakes amount S on the
(3

3

)
= 1 accumulator of type 3, which pays money if all three

wagers win,

• a trixie bet which stakes amount S
4 on each of the aforementioned double bets (3 accumulators of type

2) and the aforementioned treble bet (1 accumulator of type 3), or

• a patent bet that stakes amount S
7 on each of the aforementioned single bets (3 accumulators of type 1) and

each of the bets in the aforementioned trixie bet (3 accumulators of type 2 and 1 accumulator of type 3).

Note that the singles, doubles, and treble bets belong to the category of permutation bet types, while the

trixie and patent bets belong to the category of full-cover bet types.

Lottery representations of permutation and full-cover bets can be constructed by combining the lottery

representations of the elemental accumulator bets. Several bet calculators are available on the web that help

bettors compute the prizes and probabilities of their chosen bets following the rules described above.

For example, consider an individual who submits the following bets:

• He stakes AC50 on a single bet consisting of one wager in which the outcomes’ odds are 1.33 and 2.80,

1The simplest bet type is an accumulator of type 1. Accumulators of type 1, 2, and 3 are usually called single, double, and
treble bets, respectively.

2For example, a bet that combines a wager to back Barcelona to draw Real Madrid at odds 4.00 with a wager to back Federer
to beat Hartfield in the first set at odds 1.60 is an accumulator bet of type 2. This accumulator would have a gross (net) payoff
equal to the amount of money staked times 4.00 × 1.60 = 6.40 (6.40 − 1 = 5.40) if both wagers won, and a gross (net) payoff
equal to 0 (minus the stake) otherwise.
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and the backed outcome’s odds are 1.33.

• He stakes AC30 on a doubles bet consisting of three wagers: (i) in the first wager, the outcomes’ odds are

2.25 and 1.56, and the backed outcome’s odds are 2.25, (ii) in the second wager, the outcomes’ odds

are 1.67 and 2.00, and the backed outcome’s odds are 1.67, and (iii) in the third wager, the outcomes’

odds are 1.10 and 4.60, and the backed outcome’s odds are 1.10.

• He stakes AC2 on a double bet consisting of two wagers: (i) in the first wager, the outcomes’ odds are

the outcomes’ odds are 4.00 and 1.20, and the backed outcome’s odds are 4.00, and (ii) in the second

wager, the outcomes’ odds are 1.60 and 2.10, and the backed outcome’s odds are 1.60.

In Figure IA.2, we compute all possible prizes and corresponding probabilities of the lotteries associated

with each of these three bets. The probabilities written in red color beside the branches of the lottery

representations are the implied probabilities. For example, in the event with outcome odds 1.33 and 2.80,

the implied probabilities are 1/1.33
1/1.33+1/2.80

≈ 0.68 and 1/2.80
1/1.33+1/2.80

≈ 0.32, respectively.
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Single:

50 · (1.33 − 1) = 16.5

-50

0.6
8

0.32

Double:

2 · (4.00 · 1.60 − 1) = 10.8

-2

0.13

0.87

Doubles:

30
3 · (2.25 · 1.67 − 1) = 27.58

30
3 · (2.25 · 1.10 − 1) = 14.75

30
3 · (1.67 · 1.10 − 1) = 8.37

27.58 + 14.75 + 8.37 = 50.7

-30

0.
04

0.1
5

0.18

0.26

0.37

Figure IA.2: Lottery representations of various bets.
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IA.3 Trace plots of MCMC draws

As explained in Section 1.3 of the paper, to estimate our model we derive the joint posterior distribution

of the model parameters conditional on the data. Since this joint posterior cannot be calculated analytically,

we obtain information about it by drawing from it using a Markov chain Monte Carlo (MCMC) algorithm.

Using this algorithm, we make 5 million draws from which we discard the first 10% as burn-in and

retain every 50th after that to mitigate serial correlation. These draws form a Markov chain with stationary

distribution equal to the joint posterior. In Figure IA.3, we present trace plots—i.e., plots of the retained draws

against the iteration number—of the proportions of individuals that belong to each behavioral type. In Figure

IA.4, we present trace plots of the population means and variances of the model parameters; for convenience of

presentation, we present these trace plots for the case in which heterogeneity in the (transformed) parameters

is simply modeled through a single normal distribution, rather than for the case in which individuals are

allocated to four different utility types. Both these sets of plots indicate no problems with convergence.
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Figure IA.3: Trace plots of the MCMC draws for the population proportions of individuals belonging to
(i) the type that exhibits no loss aversion and no probability weighting (at the bottom, using black dots),
(ii) the type that exhibits no loss aversion (second from the top, using red dots), (iii) the type that exhibits
no probability weighting (second from the bottom, using green dots), and (iv) the type that exhibits both
loss aversion and probability weighting (at the top, using blue dots).
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Figure IA.4: Trace plots of the MCMC draws for the population mean and variance of π̃ , τ̃ , and ρ̃.
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IA.4 Model fit

Here, we discuss how well our model fits the observed data. First, we show that the stochastic utility compo-

nent needed to explain the observed choices is small. Normalizing to one the utility difference between the

two degenerate lotteries with certain payoff of AC0 and AC1, respectively, we estimate the population median

of the inverse scale τ of the random component to be 1.53. This is comparable to the value estimated in some

lab experiments, and implies, e.g., that an individual making a choice between two lotteries whose utility dif-

fers by 1, chooses the less-preferred lottery with probability 0.19.3 Even though the stochastic component of

utility needed to fit the model to the data is small, it is important because it helps explain both why individuals

make different risky choices at different times and why they sometimes place bets and sometimes do not. As

we see in Figure IA.5a, for more than half of the individuals, their best chosen lottery has a slightly negative

certainty equivalent, most often a few cents below zero. This means that these individuals are—according to

the deterministic component of utility—almost indifferent between the safe and the chosen lottery, and that a

very small stochastic component of utility (e.g., from utility of gambling) is sufficient to explain their choice

to place a bet. Furthermore, as we discuss next, while the chosen risky lotteries are among the most desirable

alternatives according to the deterministic component of utility, they are rarely the most desirable alternative.

Next, we assess model fit by examining if, for the preferences we estimate for each individual, the deter-

ministic component of utility ranks his chosen lotteries among the most desirable alternatives. First, for each

observed choice of each individual, we use his estimated preferences to calculate the chosen lottery’s rank

among the alternatives, and we divide this rank by the number of alternatives to produce a normalized rank that

is close to 0 for desirable and close to 1 for undesirable lotteries. For each individual, we average this normal-

ized rank across his choices, and in Figure IA.5b we plot the histogram of this mean ranking across individuals.

For the median individual, the chosen lotteries are on average more preferred than 95% of the alternatives.

Then in Figure IA.5c we plot a histogram, across all choices of all individuals, of the certainty equivalent (CE)

difference between the chosen lottery and each of the alternatives (i.e., the individual-specific most-preferred

lottery, second-most-preferred lottery, etc.). We see that the CE difference between the chosen and the most-

preferred alternative is close to zero, meaning that, in utility terms, the chosen lottery is close to the most

desirable alternative. Furthermore, the CE difference between the chosen and most alternative lotteries is quite

high, indicating that the model does a good job of separating the desirable from the undesirable alternatives.

3For example, von Gaudecker, van Soest and Wengstrom (2011) find that an individual choosing between two lotteries whose
utility differs by 1 would choose the less-preferred one with probability 0.45.
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(a) Certainty equivalent difference, best
chosen minus safe lottery.

(b) Mean ratio ranking of chosen lottery. (c) Mean certainty equivalent difference,
chosen minus alternatives.

Figure IA.5: Illustrations of goodness of fit of our model. Panel (a) plots the histogram, across individuals, of the
certainty equivalent difference between the best chosen lottery and the safe lottery. Panel (b) plots the histogram, across
individuals, of the mean ratio ranking of the chosen lotteries; for choices that are more (less) preferred, the ranking
is close to 0 (1). Panel (c) plots the histogram, across alternatives, of the certainty equivalent difference between the
chosen lotteries and the alternatives, averaged across choices and individuals.

Finally, we examine whether our model fits the data better than (i) a model in which lotteries are chosen

randomly; (ii) a model in which all individuals have the Tversky and Kahneman (1992) parameters; and (iii)

a model in which all individuals have the population mean parameters, so essentially the no-heterogeneity

case. In Table IA.1, we present the average (across individuals) log likelihood from each model as well as

the Deviance Information Criterion, which includes a penalty for model complexity. The results show that

our model fits the data significantly better than all three alternatives. We also note that comparisons between

models with only a subset of the CPT features are implicitly part of the estimation of our mixture model,

which can be viewed as a tool for model selection analysis. As we show in Section 3 of the paper, the

model with no loss aversion (the model with all CPT features) best explains observed behavior for one-third

(two-thirds) of our individuals.

Table IA.1: Comparison of Our Model with Alternatives

log L DIC

Model Mean Median

Random Choice -251.76 -150.51 503.52
Tversky-Kahneman Parameters -227.85 -133.15 455.70
No Heterogeneity -210.94 -121.19 421.88
Our Model -179.27 -106.98 362.10

Mean and median log likelihood, across individuals, and Deviance Information Criterion (DIC) for our model and three alternatives:
(i) one in which lotteries are chosen randomly; (ii) one in which all individuals have the Tversky and Kahneman (1992) parameters;
and (iii) one in which all individuals have the population mean parameters. DIC = D (β) + pD , where D (β) = −2 log p (x,y |β ),
D (β) = E [ D (β)|x,y], and pD = D (β) − D

(
β̄
)
, with β the model parameters and β̄ = E [β|x,y], i.e., the posterior mean.
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IA.5 Application to portfolio choice/diversification

In this section, we provide more details on how we solve the portfolio choice problem described in Section

4 of the paper and we present some additional results.

In the asset-allocation problem we consider, an individual solves

max
ωS ,ωF

U
(
rp; α, λ, γ, κ

)
s.t. rp = r f + ωSrS + ωFrF ,

where all quantities are defined in Section 4 of the paper. We solve this problem for each individual in our

sample, using nominal annual returns for r f , rS , and rF , and the posterior mean estimates of his preference

parameters (αn , λn , γn , and κn). To solve this problem, we construct a two-dimensional grid spaced at 1%

increments over the range of values for the weights ωS and ωF , and we pick the weights that maximize the

objective U for each individual. We approximate the objective by generating draws for the rates of return

r f , rS , and rF , and numerically calculating the integrals.

We generate 1 million draws for r f , rS , and rF as follows. We obtain, for the period January 1975 to

December 2011, data on the risk-free (the one-month Treasury Bill) rate and on stock returns from the Center

for Research in Securities Prices (CRSP), and on U.S. equity mutual fund returns (net of fees, expenses, and

transaction costs) from the CRSP Survivorship-Bias-Free U.S. Mutual Fund Database.4 To generate each

draw, we randomly pick a month t in the period January 1975 to January 2011, and then we randomly pick

a stock among all the stocks and a fund among all the funds in our data in month t .5 For the year starting

in t , we calculate the rate of return for the risk-free asset and the excess rate of return for the chosen stock

and fund. We reduce survivorship bias as follows: If a stock’s/fund’s return is missing from the data starting

at some point during the year, we assume that with probability 0.5 it lost all its value hence its return for

the year is −1, and with probability 0.5 its return information was removed from the data for a different

reason hence we replace it with another stock/fund drawn randomly. The mean/median/standard deviation

of our draws for r f , rS , rF are 5.51%/5.23%/3.26%, 12.07%/4.69%/79.60%, and 11.49%/12.54%/24.52%,

respectively. Using these draws, we can calculate the corresponding draws of the portfolio return rp for

each combination of weights ωS and ωF . Then, we can approximate the objective U
(
rp; ·

)
by calculating

the weighted distribution function Fp on a linear grid of 10,000 values from slightly below the minimum

to slightly above the maximum draw of rp, calculating the corresponding numerical derivatives at these

values, and finally calculating the numerical integral over the whole range.

To understand how our estimated distribution of preference parameters translates to the distribution of

4Since CRSP treats different share classes of the same fund as separate funds, we identify funds’ share classes (using our own
fund-name matching algorithm as well as the MF Links database from Wharton Research Data Services) and we compute each fund’s
monthly return as the weighted average of the returns of its component share classes, with weights equal to the beginning-of-month
total net asset value of each class.

5The random draws of month t , the stock, and the fund are done with replacement. The probability of drawing each month
is the same for all months, and the probability of drawing each stock (fund) equals the market capitalization (net asset value) of
each stock (fund) divided by the total for all stocks (funds) active in month t . Alternatively, we could draw among all active stocks
and funds with equal probability; our results using this alternative generating process are very similar to the ones we present here.
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optimal portfolios we present in Figure 7, we analyze how each preference parameter affects the optimal

direct and indirect investment in equity. In Figures IA.6 and IA.7, we present the optimal weights on the

stock and fund as a function of the measure α of value-function curvature and of loss aversion λ, for various

combinations of values for the measures of the curvature γ and elevation κ of the probability weighting

function. We see that a higher α and a lower λ increase the total investment in equity and tilt the equity

investment toward an undiversified portfolio and away from a well-diversified one. Furthermore, while

the effect of γ and κ on total investment in equity is not monotonic, comparing Figure IA.7a with IA.7b

and Figure IA.7c with IA.7d, we see that both a lower γ and a higher κ unambiguously tilt the equity

investment toward an undiversified portfolio and away from a well-diversified one. Thus, the considerable

heterogeneity we estimate in α and λ implies that half of the individuals have a combination of high enough

α and/or low enough λ such that they optimally invest a significant fraction of their financial wealth in equity.

Furthermore, the heterogeneity we estimate in all preference parameters accounts for the wide heterogeneity

in the optimal split of individuals’ equity investment between the stock and the fund.
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Figure IA.6: Optimal weights on the stock (in the left graph) and fund (in the right graph) as a function
of α and λ, for the median values of γ (i.e., γ = 0.84) and κ (i.e., κ = 2.14).
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(a) Low γ , Median κ
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(b) High γ , Median κ
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(c) Median γ , Low κ
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Figure IA.7: Optimal weights on the stock (in the left graph of each panel) and fund (in the right graph of each panel)
as a function of α and λ, for various combinations of values of γ and κ across Panels (a) through (d). Panel (a) plots
the optimal weights for γ = 0.76 (the 25th percentile of the estimated γ distribution) and κ = 2.14 (the median of
the estimated κ distribution); Panel (b) for γ = 0.92 (the 75th percentile of the estimated γ distribution) and κ = 2.14;
Panel (c) for γ = 0.84 (the median of the estimated γ distribution) and κ = 1.61 (the 25th percentile of the estimated
κ distribution); and Panel (d) for γ = 0.84 and κ = 3.38 (the 75th percentile of the estimated κ distribution).
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IA.6 Prior sensitivity analysis

In this section, we conduct a prior sensitivity analysis. We check the sensitivity of our results to varying

the marginal priors of the population parameters, and also to varying the prior predictive densities, which

compound all the marginals.

First, we present results from the sensitivity analysis in which we vary the scale Z of the prior distribution

for V q
ρ̃ , from our baseline value (I), to a low value (0.1I), to a high value (10I). In Figure IA.8, we plot

the estimated population densities for each of these values for Z. We see that the prior has some effect on

the estimated densities for the CPT parameters. However, the variances of all parameters are bounded far

away from 0 under all prior specifications, suggesting that the heterogeneity we estimate is not driven by the

choice of our priors. Moreover, while we vary the prior variances by an order of magnitude, the posterior

variances vary by much less than that, indicating that the posteriors should be close to our baseline.
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Figure IA.8: Prior sensitivity analysis, for different values of the scale Z of the prior distribution for V q
ρ̃ . We

plot the estimated population densities from our baseline model, which has Z = I (in blue solid lines), from
a model with small-variance priors, which has Z = 0.1I (in black dash-dotted lines), and from a model with
large-variance priors, which has Z = 10I (in red dotted lines). The proportion with no loss aversion is 36%
for the baseline priors, 27% for the small-variance priors, and 34% for the large-variance priors. The circles
at λ = 1 and at γ = 1, κ = 1 represent point masses that correspond to the proportions of individuals with no
loss aversion and with no probability weighting, respectively. The proportion with no probability weighting
is 1% for the baseline priors, 7% for the small-variance priors, and 1% for the large-variance priors.
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Second, we show that varying the priors for the utility type proportions h does not affect their posteriors,

indicating that the priors do not drive our finding that a very substantial 36% of the individuals do not exhibit

loss aversion. Specifically, we replace the symmetric D (1) prior with the asymmetric D (1, 1, 1, 13) prior,

which underweights component probability vectors with higher values for the proportion of individuals with

no loss aversion and overweights component probability vectors with higher values for the proportion of

individuals who exhibit all features of prospect theory. In Figure IA.9, we present the estimated population

densities of the model parameters that correspond to each of these two prior specifications.
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Figure IA.9: Estimated population densities of the model parameters, for the baseline prior specification
that assumes a symmetric Dirichlet prior D (1) for the population proportions h, and for an alternative prior
specification that assumes an asymmetric Dirichlet prior D (1, 1, 1, 13). The estimated densities are plotted
in solid blue for the baseline prior, and in dash-dotted red for the alternative prior. The circles at λ = 1 and at
γ = 1, κ = 1 represent point masses that correspond to the proportions of individuals with no loss aversion
and with no probability weighting, respectively. The proportion with no loss aversion is 36% for the baseline
prior and 33% for the alternative prior, and the proportion with no probability weighting is 1% for both priors.
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Finally, we check the sensitivity of the posterior predictive distributions of the preference parameters

to their prior predictive distributions. We find that a drastic change in the prior predictive density—from the

baseline that is flat almost everywhere, except for values close to the endpoints for bounded distributions,

to an alternative that is concentrated over a smaller range of values away from the boundaries—has almost

no effect on the posterior predictive density for all parameters, indicating that the data indeed contain

information about the model parameters. To achieve the desired change in the prior predictive distribution,

we vary some of the baseline hyperprior parameters for the population mean and variance of the preference

parameters. Specifically, in the baseline priors we use parameters κ = 0, K = 100I , ζ = 6, Z = I , and in

the alternative specification for which we present results here we use K = 0.5I (and κ = 0, ζ = 6, Z = I ,

as in the baseline). The former parameter values (combined with our other prior parameters) imply that

the prior predictive density is almost flat everywhere, except for values close to the endpoints for bounded

distributions, while the latter imply that the prior predictive density is more concentrated over a small range

of values away from the boundaries. As we show in Figure IA.10, the change in the prior predictive density

is drastic but the effect on the posterior predictive density is very small.
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(a) Prior predictive density, baseline vs. alternative.
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Figure IA.10: Plots of the prior and posterior predictive densities of π,τ,and ρ for the baseline prior specification
(κ = 0, K = 100I , ζ = 6, Z = I) and for an alternative (κ = 0, K = 0.5I , ζ = 6, Z = I). In Panel (a), we plot
the prior predictive densities for the baseline prior specification (in solid blue) and for the alternative prior specification
(in dash-dotted red). The proportion with no loss aversion is 50% for both priors, and the proportion with no probability
weighting is also 50% for both priors. In Panel (b), we plot the posterior predictive densities for the baseline prior
specification (in solid blue) and for the alternative prior specification (in dash-dotted red). In both panels, the circles
at λ = 1 and at γ = 1, κ = 1 represent point masses that correspond to the proportions of individuals with no
loss aversion and with no probability weighting, respectively. The proportion with no loss aversion is 36% for both
posteriors, and the proportion with no probability weighting is 1% for both posteriors.
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