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C.1 Hierarchical mixture model

In Figure C.1, we present the directed acyclic graph representation of the hierarchical version of our

baseline mixture model described in Section 2 of the paper. In this graph, squares represent quantities that

are fixed or observed, e.g., prior parameters and data, while circles represent unknown model parameters

that need to be estimated.
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Figure C.1: Representation of the hierarchical mixture model of fund returns as a directed acyclic graph. Squares
represent quantities that are fixed or observed, e.g., prior parameters and data, while circles represent unknown
model parameters that need to be estimated.

Comparing the graph in this figure with that for the non-hierarchical mixture model in Figure 1 in the

paper, we see that the difference between the two versions is that the hierarchical one takes as given the

prior distributions for the population parameters. First, this is necessary, since classical estimation would

be intractable. Second, we generally use weak priors, and furthermore we perform a prior sensitivity

analysis which shows that our posteriors are quite robust to varying the priors (see Section 8.1 in the

paper for a brief summary and Section C.12 in this appendix for details).
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C.2 Simulations

Here, we present additional results on the simulations we perform in Section 3 of the paper.

First, we present results relating to the first set of our simulations (see Table 1 in the paper), in which

we generate alphas from mixed distributions and compare our estimated proportions of skill types with

those obtained from fund-level hypothesis tests, with and without the FDR correction. In Table C.1, we

present the true percentiles of each simulated alpha distribution, as well as point and interval estimates

— the posterior mean and 90% Highest Posterior Density Interval (HPDI) — of these percentiles using

our methodology. These results show that our methodology is flexible enough to estimate well not only

the proportions of skill types but also the entire alpha distribution even, e.g., in cases in which nonzero

alphas are discrete or normal.

Next, we present results relating to the second set of our simulations (see Figure 2 in the paper), in

which we generate alphas from continuous distributions and compare our estimated distribution of alpha

with that of the hierarchical normal model. In Table C.2, we present the true percentiles of each simulated

alpha distribution, as well as point and interval estimates — the posterior mean and 90% HPDI — of

these percentiles using our methodology. The results in this table show that our model is flexible enough

to estimate reasonably well the entire alpha distribution in the case of both a normal distribution as well

as a skewed and fat-tailed distribution without a point mass at zero. In Table C.3, we present the true

percentiles of each simulated alpha distribution, as well as point and interval estimates — the posterior

mean and 90% HPDI — of these percentiles using the hierarchical normal model. As expected, the results

in this table show that the normal model can accurately estimate the distribution if alphas are drawn

from a normal, but grossly mis-estimates it if alphas are drawn from a skewed and fat-tailed distribution.
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Table C.1: Simulations with Mixed Distributions — True and Estimated Percentiles of Fund Skill Distribution

Results from simulations in which alphas (expressed as annualized percentages) are generated from mixed distributions with a point mass at zero and with nonzero alphas
drawn from a discrete distribution (in Panel A), a normal distribution (in Panel B), and a log-normal distribution (in Panel C). The data generating processes (DGPs) within
each panel differ in the proportions π0, π−, π+ of funds with zero, negative, and positive alpha, respectively, and/or in the distance of nonzero alphas from zero. In Panel A,
α ∼ π0δ0 + π

−δx− + π
+δx+ , with large nonzero alphas x− = −3.2 and x+ = 3.8 and unequal proportions π0

= 0.75, π− = 0.23, π+ = 0.02 (DGP D-1), and with
small nonzero alphas x− = −1.2 and x+ = 1.8 and equal proportions π0

= 0.34, π− = 0.33, π+ = 0.33 (DGP D-2). In Panel B, α ∼ π0δ0 + π
−,+ fN

(
α
∣∣−1.45, σ 2 )

with large variance σ 2
= 72 and a large point mass π0

= 0.90 (DGP N -1), and with small variance σ 2
= 7.2 and a smaller point mass π0

= 0.35 (DGP N -2). In Panel
C, α ∼ π0δ0 + π

− flnN
(
|α|
∣∣µ, σ 2 )

+ π+ flnN
(
|α|
∣∣µ, σ 2 ) with nonzero alphas far from zero i.e. µ = 2 and σ 2

= 0.2 (DGP L-1), and close to zero i.e. µ = 1 and
σ 2
= 0.35 (DGP L-2), and with proportions π0

= 0.45, π− = 0.28, π+ = 0.27 in both cases. For each DGP, we report the true percentiles of the alpha distribution and
their posterior mean and 90% HPDI estimated using our methodology.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Panel A: Discrete nonzero alphas

DGP D-1: Large alphas True -3.20 -3.20 -3.20 -3.20 -3.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.80 3.80
Posterior Mean -3.66 -3.57 -3.35 -3.22 -2.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.73 3.97

5% -3.78 -3.69 -3.42 -3.26 -3.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.51 3.78
95% -3.51 -3.46 -3.30 -3.17 -2.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.91 4.16

DGP D-2: Small alphas True -1.20 -1.20 -1.20 -1.20 -1.20 -1.20 0.00 0.00 0.00 1.80 1.80 1.80 1.80 1.80 1.80
Posterior Mean -1.52 -1.46 -1.30 -1.23 -1.12 -0.97 0.00 0.00 0.00 1.58 1.75 1.88 1.97 2.14 2.21

5% -1.66 -1.58 -1.37 -1.27 -1.16 -1.05 0.00 0.00 0.00 1.50 1.70 1.83 1.91 2.02 2.06
95% -1.37 -1.34 -1.24 -1.18 -1.06 -0.84 0.00 0.00 0.00 1.66 1.79 1.92 2.03 2.24 2.32

Panel B: Normal nonzero alphas

DGP N -1: Large variance True -15.48 -12.08 -1.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.65 12.81
Posterior Mean -15.95 -11.75 -1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.03 12.50

5% -18.19 -13.24 -3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.85 10.92
95% -13.97 -10.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.21 14.39

DGP N -2: Small variance True -7.76 -7.13 -5.24 -4.18 -2.78 -1.65 -0.66 0.00 0.00 0.00 0.00 1.39 2.42 4.51 5.25
Posterior Mean -8.02 -7.15 -5.10 -4.11 -2.81 -1.60 -0.75 0.00 0.00 0.00 0.06 1.28 2.26 4.32 5.25

5% -8.60 -7.56 -5.28 -4.26 -2.97 -1.78 -0.95 0.00 0.00 0.00 0.00 1.06 2.05 3.98 4.76
95% -7.54 -6.81 -4.93 -3.95 -2.65 -1.43 0.00 0.00 0.00 0.04 0.38 1.45 2.46 4.73 5.89

Panel C: Log-normal nonzero alphas

DGP L-1: Far from zero True -19.92 -17.76 -12.38 -9.80 -6.32 0.00 0.00 0.00 0.00 0.00 5.87 9.30 11.97 18.15 21.65
Posterior Mean -20.93 -18.30 -12.29 -9.56 -6.25 0.00 0.00 0.00 0.00 0.00 6.11 9.46 12.18 18.18 20.81

5% -22.04 -19.14 -12.71 -9.92 -6.60 0.00 0.00 0.00 0.00 0.00 5.75 9.15 11.78 17.36 19.76
95% -19.87 -17.56 -11.87 -9.25 -5.94 0.00 0.00 0.00 0.00 0.00 6.40 9.77 12.63 19.01 21.90

DGP L-2: Close to zero True -9.81 -8.42 -5.23 -3.84 -2.15 0.00 0.00 0.00 0.00 0.00 1.95 3.58 5.00 8.67 10.95
Posterior Mean -10.19 -8.59 -5.17 -3.75 -2.15 0.00 0.00 0.00 0.00 0.00 2.05 3.68 5.16 8.78 10.51

5% -11.01 -9.22 -5.43 -3.94 -2.31 0.00 0.00 0.00 0.00 0.00 1.88 3.51 4.92 8.24 9.78
95% -9.45 -8.06 -4.95 -3.57 -1.97 0.00 0.00 0.00 0.00 0.00 2.23 3.86 5.39 9.34 11.31
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Table C.2: Simulations with Continuous Distributions — True and Estimated Percentiles of Skill Distribution from Our Model

Results from simulations in which alphas (expressed as annualized percentages) are generated from continuous-distribution data generating processes (DGPs) and
are estimated using our methodology. In Panel A we present results for alphas simulated from a normal distribution, and in Panel B we present results for alphas
simulated from a negatively-skewed and fat-tailed distribution. Specifically, in Panel A, we present results for DGP C-1, i.e., α ∼ fN

(
·
∣∣µ, σ 2 ), with µ = −2.5

and σ 2
= 4. In Panel B, we present results for DGP C-2, i.e., α ∼ πN f N

+ π− f − + π+ f +, with πN
= 0.10, π− = 0.80, π+ = 0.10, f N (α) = fN (α |0, 0.1 ),

f − (α) = flnN (|α| |0.1, 0.5 ) for α < 0, and f + (α) = flnN (|α| |0.1, 0.5 ) for α > 0. For each DGP, we report the true percentiles of the alpha distribution and their
posterior mean and 90% HPDI estimated using our methodology. The 90% HPDI is the smallest interval such that the posterior probability that a parameter lies in it is
0.90.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Panel A: Normal alphas

DGP C-1 True -7.56 -6.95 -5.70 -5.01 -4.15 -3.51 -2.99 -2.47 -1.96 -1.46 -0.80 0.11 0.76 1.96 2.57

Posterior Mean -8.34 -7.55 -5.74 -4.92 -4.02 -3.41 -2.91 -2.44 -1.94 -1.41 -0.94 0.00 1.04 1.94 2.31

5% -9.02 -8.07 -5.93 -5.06 -4.14 -3.52 -3.02 -2.56 -2.07 -1.59 -1.11 0.00 0.86 1.73 2.01
95% -7.72 -7.13 -5.56 -4.78 -3.88 -3.28 -2.79 -2.32 -1.78 -1.26 -0.78 0.56 1.21 2.17 2.65

Panel B: Negatively skewed and fat-tailed alphas

DGP C-2 True -6.53 -5.43 -3.21 -2.47 -1.74 -1.35 -1.10 -0.88 -0.67 -0.50 -0.27 0.42 1.11 2.75 3.42

Posterior Mean -6.31 -5.21 -3.11 -2.36 -1.69 -1.32 -1.06 -0.85 -0.67 -0.50 -0.27 0.29 1.13 2.78 3.59

5% -6.97 -5.67 -3.29 -2.48 -1.76 -1.39 -1.12 -0.92 -0.74 -0.56 -0.36 0.00 0.91 2.45 3.11
95% -5.69 -4.78 -2.92 -2.24 -1.61 -1.25 -1.00 -0.79 -0.62 -0.43 0.00 0.57 1.31 3.17 4.23
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Table C.3: Simulations with Continuous Distributions — True and Estimated Percentiles of Skill Distribution from Hierarchical Normal

Results from simulations in which alphas (expressed as annualized percentages) are generated from continuous-distribution data generating processes (DGPs) and are
estimated using the hierarchical normal model. In Panel A we present results for alphas simulated from a normal distribution, and in Panel B we present results for
alphas simulated from a negatively-skewed and fat-tailed distribution. Specifically, in Panel A, we present results for DGP C-1, i.e., α ∼ fN

(
·
∣∣µ, σ 2 ), with µ = −2.5

and σ 2
= 4. In Panel B, we present results for DGP C-2, i.e., α ∼ πN f N

+ π− f − + π+ f +, with πN
= 0.10, π− = 0.80, π+ = 0.10, f N (α) = fN (α |0, 0.1 ),

f − (α) = flnN (|α| |0.1, 0.5 ) for α < 0, and f + (α) = flnN (|α| |0.1, 0.5 ) for α > 0. For each DGP, we report the true percentiles of the alpha distribution and
their posterior mean and 90% HPDI estimated using the hierarchical normal model. The 90% HPDI is the smallest interval such that the posterior probability that a
parameter lies in it is 0.90.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Panel A: Normal alphas

DGP C-1 True -7.56 -6.95 -5.70 -5.01 -4.15 -3.51 -2.99 -2.47 -1.96 -1.46 -0.80 0.11 0.76 1.96 2.57

Posterior Mean -7.60 -7.10 -5.73 -5.00 -4.12 -3.48 -2.94 -2.43 -1.92 -1.38 -0.75 0.14 0.87 2.23 2.73

5% -7.75 -7.24 -5.84 -5.10 -4.20 -3.56 -3.02 -2.51 -2.00 -1.46 -0.83 0.04 0.74 2.07 2.56
95% -7.43 -6.95 -5.62 -4.90 -4.04 -3.41 -2.87 -2.37 -1.86 -1.31 -0.67 0.23 0.97 2.38 2.89

Panel B: Negatively skewed and fat-tailed alphas

DGP C-2 True -6.53 -5.43 -3.21 -2.47 -1.74 -1.35 -1.10 -0.88 -0.67 -0.50 -0.27 0.42 1.11 2.75 3.42

Posterior Mean -4.48 -4.14 -3.20 -2.71 -2.10 -1.67 -1.30 -0.95 -0.60 -0.23 0.20 0.81 1.30 2.24 2.58

5% -4.63 -4.27 -3.31 -2.79 -2.17 -1.73 -1.35 -1.01 -0.66 -0.29 0.14 0.73 1.22 2.13 2.46
95% -4.35 -4.02 -3.11 -2.62 -2.04 -1.61 -1.24 -0.89 -0.55 -0.17 0.27 0.89 1.40 2.36 2.71
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C.3 Summary statistics

Here, we present summary information for the funds in the two samples of actively managed open-end US equity

funds that we use in our analyses in Sections 5 through 8 of the paper: the baseline sample of 3,497 funds and

the restricted sample with reliable investment objective data for 1,865 funds.

Table C.4: Summary Statistics of Fund Characteristics

Summary statistics of fund characteristics for the two samples of actively managed open-end US equity funds used in the
empirical analyses in Sections 5 through 8 of the paper. In Panel A, we present summary statistics for the baseline sample of
3,497 funds, and in Panel B for the restricted sample of 1,865 funds with reliable investment objective information; both samples
span the period January 1975 through December 2011. Fund age is the number of years since the fund’s establishment. Total
net asset value (TNAV) is measured in millions of dollars. Expense ratio is defined as total annual management, administrative,
and 12b-1 fees and expenses divided by year-end TNAV, and is expressed as a percentage. Turnover ratio is defined as the
minimum of aggregate purchases and sales of securities divided by the average TNAV over the calendar year, and is expressed
as a percentage. Fund inflows are defined as the net fund flows into the mutual fund over the calendar year, divided by the
TNAV at the end of the previous calendar year, and they are expressed as a percentage; negative values indicate net outflows.
The summary statistics reported are calculated across all fund-months in each sample.

Panel A: Baseline sample

Percentiles

Mean Std.Dev. 5th 10th 25th 50th 75th 90th 95th

Fund age 12.56 13.20 1 2 4 8 16 30 42
Total net asset value 942 3,992 4 10 37 143 551 1,747 3,634
Expense ratio 1.31% 1.00% 0.27% 0.66% 0.95% 1.24% 1.58% 1.97% 2.24%
Turnover ratio 96% 161% 10% 17% 34% 66% 116% 183% 249%
Fund inflows 46% 159% −37% −27% −14% 1.4% 33% 124% 273%

Panel B: Restricted sample

Percentiles

Mean Std.Dev. 5th 10th 25th 50th 75th 90th 95th

Fund age 15.25 14.26 1 2 5 11 20 35 47
Total net asset value 1,245 4,804 7 14 53 202 765 2,403 4,928
Expense ratio 1.29% 0.96% 0.12% 0.65% 0.94% 1.22% 1.54% 1.95% 2.21%
Turnover ratio 88% 109% 10% 17% 34% 66% 113% 177% 237%
Fund inflows 37% 142% −36% −27% −14% −0.5% 27% 101% 217%

Table C.5: Assignment of Funds to Investment Strategies

The number and fraction of funds allocated to each investment objective — Growth & Income, Growth, Aggressive Growth —
in the restricted sample of 1,865 funds with reliable investment objective information from the Thomson database.

Investment Objective # of Funds %age of Funds

Growth & Income 405 21.7%
Growth 1,230 66.0%
Aggressive Growth 230 12.3%
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C.4 Fund fees

Here, we present a plot of the empirical density of annual fund fees and expenses, expressed as a percent

of total net asset value. This empirical density is constructed from the average (across the lifetime

of each fund) annual fees and expenses for the 3,497 funds in our sample. Fees and expenses are

reported annually in the CRSP Survivorship-Bias-Free US Mutual Fund Database, and they include

annual management, administrative, and 12b-1 fees, and expenses.

The empirical density of fees and expenses shown in Figure C.2 has a mode at 0.95%. The mean,

median, and standard deviation of fees and expenses are 1.16%, 1.09%, and 0.68%, respectively.

0% 1% 2% 3% 4% 5%
0

0.2

0.4

0.6

0.8

1

Fund Fees

Figure C.2: Plot of the empirical density of annual fund fees and expenses (expressed as a percent of total net
asset value) across 3,497 funds.
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C.5 The distribution of skill

In this section, we present some additional figures and tables regarding the estimation of the baseline

model presented in Section 2 of the paper using returns net of expenses for 3,497 funds. These results

supplement those presented in Section 5 of the paper.

First, we present results on the posterior distributions of the population mean and standard deviation

of alpha and the factor loadings (in Table C.6), and of the population correlations between factor loadings

(in Table C.7). We present these results conditional on K− = 2, K+ = 1, rather than presenting tables

for each of the 16 possible models.

Table C.6: Population Mean and Standard Deviation of Alpha and Factor Loadings

Results on the posterior distributions of the population mean and standard deviation of annualized alpha (expressed
as a percent) and the factor loadings, estimated using our baseline model presented in Section 2 with returns net
of expenses, conditional on the model with the highest posterior probability, i.e., K− = 2 and K+ = 1. The 95%
HPDI is the smallest interval such that the posterior probability that a parameter lies in it is 0.95. NSE stands
for autocorrelation-adjusted numerical standard errors for the posterior mean estimate of each parameter. The
population mean and variance of alpha for the zero-alpha funds is constrained to equal zero.

Means Standard Deviations

Mean Median Std.Dev. 95% HPDI NSE Mean Median Std.Dev. 95% HPDI NSE

α0 0 0 0 [0 , 0] 0 0 0 0 [0 , 0] 0

α
−
1

−1.11 −1.11 0.16 [−1.39 ,−0.75] 0.01 0.66 0.64 0.19 [0.36 , 1.16] 0.01

α
−
2

−2.11 −1.50 1.68 [−7.39 ,−0.93] 0.07 3.04 2.06 3.05 [0.81 , 9.90] 0.08
α+ 1.04 1.00 0.30 [0.54 , 1.77] 0.02 1.29 1.22 0.37 [0.77 , 2.18] 0.02

βM 0.95 0.95 0.00 [0.94 , 0.96] 0.00 0.21 0.21 0.00 [0.21 , 0.22] 0.00
βSMB 0.19 0.19 0.01 [0.18 , 0.20] 0.00 0.31 0.31 0.00 [0.30 , 0.31] 0.00
βHML 0.02 0.02 0.01 [0.01 , 0.03] 0.00 0.34 0.34 0.00 [0.33 , 0.35] 0.00
βUMD 0.01 0.01 0.00 [0.01 , 0.01] 0.00 0.10 0.10 0.00 [0.10 , 0.11] 0.00

Table C.7: Population Correlation Matrix

Means and standard deviations (in parentheses) of the posteriors of population correlations between the factor
loadings, for our baseline model presented in Section 2 with returns net of expenses.

βSMB βHML βUMD

βM 0.30 −0.47 0.11
(0.01) (0.01) (0.01)

βSMB −0.12 0.18
(0.01) (0.01)

βHML −0.44
(0.01)
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As explained in Section 2.4 of the paper, to estimate our model we need to derive the joint posterior

distribution of the model parameters conditional on the data. Since this joint posterior cannot be calcu-

lated analytically, we obtain information about it by drawing from it using a Markov chain Monte Carlo

(MCMC) algorithm. Section 2.4 of the paper and Section B of the paper’s appendix provide details

about the MCMC algorithm we employ.

Using this algorithm, we make 5 million draws from which we discard the first 10% as burn-in and

retain every 50th after that to mitigate serial correlation. These draws form a Markov chain with stationary

distribution equal to the joint posterior. In Figure C.3, we present trace plots (plots of the retained draws

against the iteration number) of the proportions of funds with zero, negative, and positive alpha. In Figure

C.4, we present trace plots of the population means and variances of the distributions of alpha for negative-

and positive-alpha funds, and of the factor loadings, conditional on the highest-posterior-probability

model, i.e., K− = 2, K+ = 1. These plots indicate no convergence problems.

We note that, in mixture models, the posterior distribution of parameters is invariant to permutations

of the components’ labels. As a result, inference regarding parameters that are not invariant to component

relabeling in the MCMC draws is problematic. We circumvent this issue in two ways. First, we focus

on inferences that are invariant to label switching, i.e., inference on: the numbers of components K−,

K+; the population proportions π0, π−, π+; the population mean µβ and variance Vβ of the loadings;

the population shape κh and scale λh of the error distribution; the individual-level alpha αi , loadings βi ,

and error precisions hi ; the individual-level latent allocations to groups e0
i ,
∑

1≤k≤K− e−i,k ,
∑

1≤k≤K+ e+i,k ;

and the density of alpha and the loadings. Second, to conduct inferences that are not invariant to label

switching, i.e., on component-specific probabilities
{
π

q
k

}
and distribution parameters

{(
µ

q
α,k, V q

α,k

)}
,

we retrospectively relabel components in the MCMC draws so the estimated marginal posteriors of

parameters of interest are close to unimodality (see Stephens, 1997). This achieves a unique labeling

throughout the draws, so we obtain point estimates through averaging over the draws.1 We see in Figure

C.4 that we have successfully removed the label-switching behavior from the means and variances.

1We do not impose artificial identifiability restrictions through the priors, because they do not guarantee a unique labeling
and can produce biased estimates (see Celeux, 1998). Also, see Jasra, Holmes and Stephens (2005) for a review of the various
methods that have been proposed to solve the label switching problem.
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Figure C.3: Trace plots of the MCMC draws for the population proportions of zero-alpha funds (in the top panel,
using black dots), negative-alpha funds (in the middle panel, using red dots), and positive-alpha funds (in the
bottom panel, using blue dots).
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Figure C.4: Trace plots of the MCMC draws for the population means (purple dots toward the top of each panel,
with values associated with the left vertical axes) and the population variances (green dots toward the bottom of
each panel, with values associated with the right vertical axes) of alpha and the factor loadings, conditional on
the model with the highest posterior probability, i.e., K− = 2, K+ = 1. The mean and variance of alpha are those
of the underlying normal distribution.
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C.6 Robust skewness, tail weight, and distance for standard distributions

In this section, we present robust quantile-based measures of skewness and tail weight for various

well-known distributions, to provide context for the measures we calculate for the alpha distribution we

estimate in Section 5 of the paper. We also present distance measures between the standard normal and

various well-known distributions, again to provide context for the distance we calculate between the alpha

distribution estimated from our model and from the hierarchical normal model in Section 5 of the paper.

The robust measure of skewness for our estimated alpha distribution is −0.20, its left tail weight

is 0.34, and its right tail weight is 0.27 (all quoted in excess of the values corresponding to the normal;

see Table 5 in the paper). In Table C.8, we see that the robust skewness is similar (in absolute value)

to that of a χ2 distribution that has between 30 and 50 degrees of freedom, at 0.22 and 0.17 respectively,

and the left and right tail weight measures are similar to those of a t (2) and a t (3) distribution, at 0.36

and 0.28 respectively.

The Hellinger distance between our estimated alpha distribution and the one estimated from the normal

model is H 2
= 0.11 (see Table 6 in the paper). As we can see in Table 5, this is close to i) the Hellinger

distance (H 2
= 0.11) between two normals that have the same mean but one has twice the standard devia-

tion of the other, ii) the Hellinger distance (H 2
= 0.08) between the standard normal N (0, 1) and a χ2 (3)

distribution that is scaled to have the same mean and variance as the standard normal, and iii) the Hellinger

distance (H 2
= 0.11) between the standard normal N (0, 1) and the t (1) distribution. The Wasserstein

distance between our estimated distribution and the one estimated from the normal model is W = 0.22

(see Table 6 in the paper). From 5, we can also see that this distance is close to i) the Wasserstein distance

(W = 0.19) between a standard normal and a normal that has the same mean but 25% smaller/greater

standard deviation, ii) the Wasserstein distance (W = 0.21) between the standard normal N (0, 1) and

a χ2 (4) distribution that is scaled to have the same mean and variance as the standard normal, and iii)

the Wasserstein distance (W = 0.25) between the standard normal N (0, 1) and the t (3) distribution.

C-11



Table C.8: Robust Measures of Skewness and Tail Weight for the normal, χ2, and t distributions

Robust quantile-based measures of skewness and tail weight that rely on 99% of the range of each
distribution, for the normal distribution (in Panel A), and for the χ2 (in Panel B) and t distributions
(in Panel C) with various degrees of freedom. The measure of skewness is as in Groeneveld and
Meeden (1984) — S := [Q(1−p)+Q(p)−2Q(0.5)]/[Q(1−p)−Q(p)] — and the measures of left and right tail
weight are as in Brys, Hubert, and Struyf (2006) — LTW := −

[
Q
(

1−p
2

)
+Q( p

2 )−2Q(0.25)
]
/
[

Q
(

1−p
2

)
−Q( p

2 )
]

and

RTW :=
[

Q
(

1+q
2

)
+Q(1− q

2 )−2Q(0.75)
]
/
[

Q
(

1+q
2

)
−Q(1− q

2 )
]

— where Q(x) is the x th quantile of the distribution,
and we use p=0.005 and q=0.995. The measures are reported as deviations from the corresponding
values for the normal distribution (0 for the skewness and 0.52 for the left and right tail weight measures).

Panel A: N
(
µ, σ 2) distribution

Quantile Left Right
Skewness Tail Weight Tail Weight

(S) (LTW) (RTW)

∀µ, σ 2 0 0 0

Panel B: χ2 (k) distributions

Quantile Left Right
Skewness Tail Weight Tail Weight

(S) (LTW) (RTW)

k = 3 0.64 −0.51 0.19
k = 4 0.57 −0.41 0.17
k = 5 0.52 −0.34 0.16
k = 10 0.37 −0.21 0.12
k = 20 0.27 −0.13 0.09
k = 30 0.22 −0.10 0.08
k = 50 0.17 −0.08 0.06

Panel C: t (k) distributions

Quantile Left Right
Skewness Tail Weight Tail Weight

(S) (LTW) (RTW)

k = 1 0 0.46 0.46
k = 2 0 0.36 0.36
k = 3 0 0.28 0.28
k = 4 0 0.22 0.22
k = 5 0 0.18 0.18
k = 10 0 0.09 0.09
k = 50 0 0.02 0.02
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Table C.9: Measures of Distance Between the Standard Normal and Other Distributions

Distance measures between the standard normal distribution and various normal, χ2, and t distributions.
The Hellinger distance between densities fX , fY is H 2 := 1−

∫ √
fX (s) fY (s)ds, and takes values in

[0, 1]. The Wasserstein distance between densities fX , fY is W := inf fXY E [‖X − Y‖] where fXY is
any joint density with marginals fX , fY , and takes values in [0,+∞). For the Wasserstein distance, we
present values that rely on 99% of the range of the distribution, i.e., we exclude the extreme tails to
make the distance measure robust. In Panel A, we present the distances between N (0, 1) and normal
distributions with the same mean but different standard deviation, as indicated in each row of the panel.
In Panel B, we present the distances between N (0, 1) and χ2 distributions with various degrees of
freedom as indicated in each row of the panel; these distributions are scaled to have the same mean (0)
and variance (1) as the standard normal. In Panel C, we present the distances between N (0, 1) and t
distributions with various degrees of freedom as indicated in each row of the panel.

Panel A: Distance between N (0, 1) and σ ·N (0, 1) distributions

Hellinger Wasserstein
Distance Distance(

H2) (W )

σ = 0.25 0.31 0.58
σ = 0.50 0.11 0.39
σ = 0.75 0.02 0.19
σ = 1.25 0.02 0.19
σ = 1.50 0.04 0.39
σ = 1.75 0.07 0.58
σ = 2.00 0.11 0.78

Panel B: Distance between N (0, 1) and
[
χ2(k)−k

]
/
√

2k distributions

Hellinger Wasserstein
Distance Distance(

H2) (W )

k = 3 0.08 0.24
k = 4 0.06 0.21
k = 5 0.05 0.19
k = 10 0.02 0.13
k = 20 0.01 0.09
k = 30 0.01 0.08
k = 50 0.00 0.06

Panel C: Distance between N (0, 1) and t (k) distributions

Hellinger Wasserstein
Distance Distance(

H2) (W )

k = 1 0.11 1.89
k = 2 0.05 0.45
k = 3 0.03 0.25
k = 4 0.02 0.17
k = 5 0.01 0.13
k = 10 0.00 0.06
k = 50 0.00 0.01
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C.7 Portfolio performance

In this section, we present additional results regarding the out-of-sample performance of portfolios that

select top-performing funds using i) the FDR methodology, ii) a hierarchical model in which fund alphas

are drawn from one normal, iii) a hierarchical model in which fund alphas are drawn from two normals,

and iv) our estimation methodology.

Our baseline portfolio formation rule described in detail in Section 6.1 of the paper is the following:

At the beginning of each month in the period 1980–2011, we use the preceding 60 months of fund returns

to estimate the 4-factor model using each methodology, and we form and hold until the end of the month

a portfolio of funds with high estimated probability of having a positive alpha; if all funds have a low

probability of having a positive alpha, we select funds whose posterior mean alpha (for the Bayesian

methodologies) or OLS t-statistic (for the FDR methodology) is in the top 1% among all funds in the

data set for the preceding 5 years.

In Table C.10, we present results on portfolio performance under alternative portfolio formation

rules: portfolios formed using a 36-month (instead of a 60-month) rolling estimation window, portfolios

that are left empty and portfolios that keep the top 2% (instead of the top 1%) of funds in months in

which all funds have a low probability of having a positive alpha, and portfolios that always keep the

top 1% of funds sorted by their posterior mean alpha. In particular, for each portfolio we construct, we

use its monthly portfolio returns for the period 1980–2011 to estimate its annualized OLS 4-factor alpha,

α̂, and the associated α̂ t-statistic and residual standard deviation, its information ratio, the mean and

standard deviation of its return in excess of the risk-free return, and its Sharpe ratio. We see that, as

with our baseline portfolio formation rule used in Section 6.1 in the paper, for portfolios constructed

using these alternative formation rules, those based on our methodology yield higher performance than

those based on the other methodologies. This is true not only in terms of estimated alpha, but also in

terms of the information ratio and even in terms of the Sharpe ratio. The exception to this finding is

that the conservative portfolio based on our methodology yields a lower Sharpe ratio than those based

on the other methodologies (see Panel B of the table). However, we note that, by construction, the

conservative portfolios are not active in all months, and indeed conservative portfolios based on different

methodologies are active in different months, therefore their performance is not directly comparable.
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Furthermore, our methodology estimates alpha, therefore it is not surprising that its advantage for the

Sharpe ratio is smaller than it is for the estimated alpha or for the information ratio.

In Table C.11, we present results on portfolio performance — using the measures described above —

for each of the two halves of our sample period (1980–1995 and 1995–2011). We find that our portfolio

exhibits superior performance in both subperiods.

In Table C.12, we present results on the performance of quantile-based portfolios. That is, at the

beginning of each month in the period 1980–2011, we use the preceding 60 months of fund returns to

estimate the 4-factor model using each methodology — the hierarchical model in which fund alphas

are drawn from one normal or from two normals, and our methodology — then we sort funds into ten

quantiles based on the posterior mean alpha, and we hold these quantile-based portfolios until the end

of the month. As before, for each portfolio we construct, we use its monthly portfolio returns for the

period 1980–2011 to estimate its annualized OLS 4-factor alpha, α̂, and the associated α̂ t-statistic and

residual standard deviation, its information ratio, the mean and standard deviation of its return in excess

of the risk-free return, and its Sharpe ratio. We see that the slope of returns going from the bottom

quantile to the top quantile is steeper for the portfolios constructed using our methodology than for

those constructed using the alternatives. In particular, as we see in the column labeled ‘Q10−Q1’, the

portfolio that buys the funds in the top quantile and sells the funds in the bottom quantile has α̂ = 3.23%

per year for the hierarchical model with one normal, α̂ = 3.61% for the hierarchical model with two

normals, and α̂ = 4.29% for our methodology. The difference in α̂ between the portfolio constructed

using our methodology and the one constructed using the hierarchical model with one normal (two

normals) is 1.06% (0.68%) and is statistically significant at the 1% level, with a t-statistic of 4.54 (3.59).

These results show that our methodology can better identify funds at the tails (both the right and the

left tail) of the skill distribution, which is consistent with our theoretical argument that our more flexible

semi-parametric model can better capture the tails of the distribution.
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Table C.10: Out-of-sample Portfolio Performance — Alternative Portfolio Construction Rules

Out-of-sample performance measures for portfolios that use alternative portfolio construction rules to select funds using the FDR methodology,
hierarchical models in which fund αs are drawn from one normal or from two normals, and our estimation methodology. At the beginning of each
month in the period 1980–2011, we use the preceding 36 or 60 months of fund returns to estimate the 4-factor model using each methodology, and
we form and hold until the end of the month equal-weighted portfolios of funds that are estimated to have high performance. In Panels A and B,
we construct portfolios using 60-month rolling estimation windows, and we select funds with high estimated probability of having a positive α.
During months in which all funds have a low probability of having a positive α, in Panel A we select funds whose posterior mean α or OLS α
t-statistic is in the top 2% among all funds in the ranking period (the ‘aggressive’ portfolio), while in Panel B, we leave the portfolio empty (the
‘conservative’ portfolio). In Panel C, we present results on the aggressive portfolio constructed using 36-month rolling estimation periods and
keeping the top 1% instead of the top 2% during months in which all funds have a low probability of having a positive α. In Panel D, we use a
60-month rolling estimation window, and in all months we select funds whose posterior mean α is in the top 1% among all funds in the ranking
period. For each portfolio we construct, we use its monthly returns from 1980 through 2011 to estimate its annualized OLS 4-factor alpha α̂ and
residual standard deviation σ̂ε (both expressed as percents), α̂ t-statistic, Information Ratio (α̂/σ̂ε), mean and standard deviation (both expressed as
percents) of its return in excess of the risk-free return, and its Sharpe Ratio (mean/std. dev. of excess return).

Panel A: Aggressive Portfolio with top 2% Panel B: Conservative Portfolio

FDR 1 Normal 2 Normals Our Model FDR 1 Normal 2 Normals Our Model

α̂ 1.63 1.62 1.35 2.38 α̂ 1.86 2.01 1.68 2.84
α̂ t-statistic 2.13 1.87 1.55 3.27 α̂ t-statistic 2.22 2.10 1.77 3.14
σ̂ε 4.14 4.42 4.60 3.93 σ̂ε 3.27 4.58 4.75 3.80
Information Ratio 0.39 0.36 0.29 0.61 Information Ratio 0.57 0.44 0.35 0.75
Mean Return 7.27 7.42 7.25 8.36 Mean Return 9.75 7.79 7.83 7.65
Std. dev. Return 16.69 13.64 13.81 15.00 Std. dev. Return 15.80 13.95 14.19 16.30
Sharpe Ratio 0.44 0.54 0.53 0.56 Sharpe Ratio 0.62 0.56 0.55 0.47

Panel C: Aggressive Portfolio with 36-month window Panel D: Alpha-sorted Portfolio

FDR 1 Normal 2 Normals Our Model 1 Normal 2 Normals Our Model

α̂ 1.24 1.36 1.86 2.10 α̂ 1.45 1.69 2.35
α̂ t-statistic 1.58 1.68 1.89 2.02 α̂ t-statistic 2.00 2.19 2.87
σ̂ε 4.22 4.34 6.19 6.41 σ̂ε 3.85 4.18 4.59
Information Ratio 0.29 0.31 0.30 0.33 Information Ratio 0.38 0.40 0.51
Mean Return 7.49 7.06 8.17 9.07 Mean Return 7.19 7.62 8.55
Std. dev. Return 17.05 14.57 16.46 17.34 Std. dev. Return 14.61 14.93 15.78
Sharpe Ratio 0.44 0.48 0.50 0.52 Sharpe Ratio 0.49 0.51 0.54

C
-16



Table C.11: Out-of-sample Portfolio Performance — Sub-samples

Out-of-sample performance measures for two non-overlapping sub-samples, for portfolios that select funds using the FDR methodology, hierarchical
models in which fund αs are drawn from one normal or from two normals, and our estimation methodology. At the beginning of each month in the
period 1980–2011, we use the preceding 60 months of fund returns to estimate the 4-factor model using each methodology, and we form and hold
until the end of the month equal-weighted portfolios of funds that are estimated to have high probability of having a positive α (see Section 6.1 of
the paper for more details). During months in which all funds have a low probability of having a positive α, we select funds whose posterior mean
α (for the three hierarchical methodologies) or OLS t-statistic (for the FDR methodology) is in the top 1% among all funds in the data set for the
preceding 60 months. For each portfolio we construct, we use its monthly portfolio returns from 1980 to 1995 (in Panel A) and from 1995 to
2011 (in Panel B) to estimate its annualized OLS 4-factor alpha α̂ and residual standard deviation σ̂ε (both expressed as percents), α̂ t-statistic,
Information Ratio (α̂/σ̂ε), mean and standard deviation (both expressed as percents) of its return in excess of the risk-free return, and its Sharpe
Ratio (mean/std. dev. of excess return).

Panel A: 1st–half Sub-sample Panel B: 2nd–half Sub-sample

FDR 1 Normal 2 Normals Our Model FDR 1 Normal 2 Normals Our Model

α̂ 2.45 2.22 1.80 3.36 α̂ 1.54 1.92 1.62 2.24

α̂ t-statistic 2.73 2.74 2.22 3.51 α̂ t-statistic 1.27 1.70 1.33 2.28

σ̂ε 3.05 3.03 3.07 3.73 σ̂ε 4.99 4.20 4.60 3.74

Information Ratio 0.80 0.73 0.59 0.90 Information Ratio 0.31 0.46 0.35 0.60

Mean Return 8.52 8.49 8.07 10.59 Mean Return 7.04 6.51 6.47 7.21

Std. dev. Return 15.90 14.83 14.91 15.47 Std. dev. Return 17.48 12.41 12.82 14.46

Sharpe Ratio 0.54 0.57 0.54 0.68 Sharpe Ratio 0.40 0.52 0.50 0.50
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Table C.12: Out-of-sample Portfolio Performance — Quantile-based Portfolios

Out-of-sample performance measures for portfolios that select funds using hierarchical models in which fund αs are drawn from
one normal (in Panel A) or from two normals (in Panel B), and our estimation methodology (in Panel C). At the beginning of
each month in the period 1980–2011, we use the preceding 60 months of fund returns to estimate the 4-factor model using each
methodology, we sort funds into ten quantiles (Q1 through Q10) based on the posterior mean α, and we hold these quantile-based
portfolios until the end of the month. We also form the portfolio (labeled ‘Q10−Q1’) which buys the funds belonging to the top
quantile and sells the funds belonging to the bottom quantile. For each portfolio, we use its monthly returns from 1980 through
2011 to estimate its annualized OLS 4-factor alpha α̂ and residual standard deviation σ̂ε (both expressed as percents), α̂ t-statistic,
Information Ratio (α̂/σ̂ε), mean and standard deviation (both expressed as percents) of its return in excess of the risk-free return,
and its Sharpe Ratio (mean/std. dev. of excess return).

Panel A: 1 Normal

Quantiles

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q10−Q1

α̂ −2.86 −2.14 −0.94 −0.86 −1.18 −1.19 −0.94 0.26 0.30 0.37 3.23
α̂ t-statistic −6.02 −5.47 −2.02 −1.57 −1.87 −1.86 −1.86 0.52 0.60 0.76 5.94
σ̂ε 2.48 2.20 2.45 2.94 3.30 3.17 2.61 2.50 2.62 2.69 2.84
Information Ratio −1.15 −0.97 −0.38 −0.29 −0.36 −0.38 −0.36 0.10 0.11 0.14 1.14
Mean Return 3.33 4.18 5.28 5.68 5.25 5.33 5.64 6.60 6.46 6.42 3.10
Std dev Return 14.96 15.32 15.50 15.71 15.69 15.77 16.19 16.24 16.26 15.29 2.91
Sharpe Ratio 0.22 0.27 0.34 0.36 0.33 0.34 0.35 0.41 0.40 0.42 1.06

Panel B: 2 Normals

Quantiles

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q10−Q1

α̂ −3.09 −1.84 −1.02 −1.19 −1.00 −1.23 −0.49 −0.09 0.24 0.52 3.61
α̂ t-statistic −6.35 −4.63 −2.24 −2.29 −1.64 −2.09 −0.96 −0.17 0.49 1.02 6.42
σ̂ε 2.56 2.22 2.39 2.80 3.15 2.93 2.73 2.49 2.61 2.81 3.01
Information Ratio −1.21 −0.83 −0.43 −0.43 −0.32 −0.42 −0.18 −0.03 0.09 0.19 1.20
Mean Return 3.14 4.45 5.22 5.29 5.47 5.26 6.07 6.27 6.42 6.56 3.42
Std dev Return 15.10 15.31 15.40 15.60 15.59 15.85 16.16 16.24 16.24 15.37 3.10
Sharpe Ratio 0.21 0.29 0.34 0.34 0.35 0.33 0.38 0.39 0.40 0.43 1.10

Panel C: Our Model

Quantiles

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q10−Q1

α̂ −3.48 −1.62 −0.65 −1.50 −0.85 −1.06 −0.78 −0.06 −0.04 0.80 4.29
α̂ t-statistic −7.17 −3.90 −1.22 −2.85 −1.63 −1.79 −1.66 −0.11 −0.07 1.48 6.89
σ̂ε 2.63 2.23 2.82 2.79 2.68 2.84 2.46 2.63 2.68 3.05 3.41
Information Ratio −1.32 −0.72 −0.23 −0.54 −0.32 −0.37 −0.32 −0.02 −0.01 0.26 1.26
Mean Return 2.83 4.68 5.69 5.04 5.48 5.37 5.83 6.25 6.19 6.77 3.96
Std dev Return 15.36 15.42 15.50 15.53 15.43 15.61 16.01 16.05 16.20 15.73 3.53
Sharpe Ratio 0.18 0.30 0.37 0.32 0.36 0.34 0.36 0.39 0.38 0.43 1.12
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Observing Tables C.10 and C.11 above, it is interesting that the performance of the portfolio constructed using the

hierarchical model with two normals is in some cases worse than that of the portfolio constructed using the hierarchical

model with one normal. This may be due to noise, since funds are allocated to portfolios using only a few years of data,

but it could also be explained as follows. The hierarchical model with two normals attempts to estimate the fat tails of the

alpha distribution and is therefore more aggressive about placing funds in the right tail, but due to its limited flexibility

it may be unable to do so accurately. This intuition is consistent with the evidence in Figure C.5, which presents repre-

sentative Quantile-Quantile plots of the posterior alphas from the hierarchical model with one normal (in Panel a) and

with two normals (in Panel b) versus the posterior alphas from our model, for one of the estimation periods used in the

construction of the portfolios. We see that, while the model with two normals does a better job than the model with one

normal in estimating the largest alpha at more than 3% annualized, it also overestimates (relative to our model) a number

of large alphas, and therefore would over-aggressively include them in the portfolio of the best-performing funds.
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(a) 1-normal model vs. our model.
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(b) 2-normal model vs. our model

Figure C.5: Representative Quantile-Quantile plots of posterior mean alphas estimated from the hierarchical model with one
normal (in Panel a) and with two normals (in Panel b) versus posterior mean alphas estimated using our methodology, for one
of the 60-month periods used in the rolling estimation employed to construct the portfolios in Section 6.1 of the paper. The blue
cross marks plot the quantiles, and the solid red line plots the 45◦ line.
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C.8 Posterior predictive densities

In this section, we explain in detail how we make draws from the posterior predictive densities of

benchmark portfolio returns and of fund returns. These draws are necessary for our calculation of

optimal portfolios in Section 6.2 of the paper. The posterior predictive density p
(
ri,T+1,FT+1

∣∣ r,F) is∫
p
(
ri,T+1,FT+1,χi ,χF

∣∣ r, F
)

dχiχF , where χi and χF denote the parameters of the distribution of ri and

F , respectively, and where r and F collect all fund and benchmark portfolio returns, respectively. Using

simple rules of probability, we can rewrite p
(
ri,T+1, FT+1, χi , χF

∣∣ r, F
)

as p
(
ri,T+1, FT+1

∣∣χi , χF
)

times

p (χi , χF | r, F) and p
(
ri,T+1, FT+1

∣∣χi , χF
)

as p
(
ri,T+1 |FT+1, χi

)
p(FT+1|χF), while p (χi , χF | r, F) is

proportional to p (χi |r, F ) p (χF |F ). That is,

p
(

ri,T+1, FT+1
∣∣ r, F

)
∝

∫
p
(
ri,T+1 |FT+1, χi

)
p
(

FT+1|χF

)
p (χi | r, F) p

(
χF

∣∣ F
)

dχiχF .

Thus, to make draws from the posterior predictive density p
(
ri,T+1, FT+1

∣∣ r,F), we make draws from

p(χF |F ) and p(χi |r,F ), which we use to make draws from p (FT+1|χF) and subsequently from

p
(
ri,T+1 |FT+1, χi

)
. To make draws from p (χi |r, F ), we work as in Section 2.4 of the paper, and to

make draws from p
(
ri,T+1 |FT+1, χi

)
we use the linear factor model in Equation 1 of the paper. Below,

we describe how we make draws from p (χF |F ) and from p (FT+1|χF).

For the factor returns, we assume that they are i.i.d. normal, that is Ft |µF , 6F ∼ N (µF , 6F), and

that the distribution parameters (µF , 6F) follow the conjugate Normal-inverse-Wishart prior given by

µF ,6F

∣∣∣µF
, κ F , νF ,3F ∼NIW

(
µ

F
, κ F , νF ,3F

)
, i.e.,

µF

∣∣∣µF
, κ F , 6F ∼ N

(
µ

F
,

1
κ F
6F

)
6−1

F

∣∣νF ,3F ∼ W
(
νF ,3

−1
F

)
,

where µ
F

, κ F , νF , and 3F are prior parameters. In particular, using the Jeffrey’s prior p (µF ,6F)∝

|6F |
−

kF+1
2 (with kF the number of factors) and observing data F :={Ft}

T
t=1, the posterior of (µF ,6F)

is Normal-inverse-Wishart µF ,6F |F ∼NIW
(
µ̂F , T, T−1, T 6̂F

)
, i.e.,

µF |6F , F ∼ N
(
µ̂F ,

1
T
6F

)
6−1

F |F ∼ W
(

T − 1,
(

T 6̂F

)−1
)
,
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where

µ̂F :=
1
T

T∑
t=1

Ft

6̂F :=
1
T

T∑
t=1

(
Ft − µ̂F

) (
Ft − µ̂F

)′
.

Thus, to generate m = 1, . . . ,M draws for the benchmark portfolio returns from the posterior predictive

density, we generate draw 6(m)
F from 6−1

F |F above, we use this to generate draw µ(
m)

F from µF |6F , F

above, and we use both to generate draw F (m)
T+1 from N

(
µ(

m)
F , 6(m)

F

)
.

To generate m = 1, . . . ,M draws for fund i’s returns from the posterior predictive density, first

we randomly pick m = 1, . . . ,M draws from our MCMC draws for αi , βi , and hi , whose joint

distribution converges to their joint posterior distribution. Then, we generate m = 1, . . . ,M draws

ε(
m)

i,T+1 ∼ N
(

0,
(

h(m)i

)−1
)

. Finally, we combine draws α(m)i , β(m)i , ε(m)i,T+1 with draw F (m)
T+1 for the bench-

mark portfolio returns whose generation is described above, and substitute them in the linear factor

model equation to calculate the draw r (m)i,T+1 = α
(m)
i +

(
F (m)

T+1

)′
β(

m)
i + ε

(m)
i,T+1.
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C.9 The distribution of skill by fund investment objective

In this section, we present additional results regarding the estimation of the K− = 2, K+ = 1 model

separately for funds classified to each of the three investment objectives (Growth & Income, Growth,

and Aggressive Growth); see Section 7.1 of the paper for details. In particular, in Table C.13, we present

the percentiles of the estimated distributions of alpha and the factor loadings.

Table C.13: Percentiles of Estimated Distributions — By Investment Objective

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent) and factor loadings,
estimated with returns net of expenses using the K− = 2, K+ = 1 model separately for funds classified to the three
investment objective categories: Growth & Income (Panel A), Growth (Panel B), and Aggressive Growth (Panel
C).

Panel A: Growth & Income Objective

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -3.75 -3.15 -2.04 -1.66 -1.34 -1.14 -0.96 -0.80 -0.63 -0.40 0.00 0.00 0.47 1.32 1.71
βM 0.29 0.34 0.47 0.55 0.63 0.70 0.75 0.80 0.85 0.90 0.97 1.06 1.13 1.27 1.31
βSMB -0.46 -0.42 -0.30 -0.24 -0.17 -0.12 -0.07 -0.03 0.01 0.06 0.11 0.18 0.24 0.36 0.40
βHML -0.34 -0.29 -0.16 -0.09 -0.00 0.06 0.11 0.16 0.21 0.26 0.32 0.40 0.47 0.60 0.65
βUMD -0.25 -0.23 -0.17 -0.14 -0.10 -0.07 -0.04 -0.02 0.00 0.02 0.05 0.09 0.12 0.18 0.21

Panel B: Growth Objective

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -4.90 -4.10 -2.56 -1.99 -1.45 -1.12 -0.87 -0.64 -0.40 0.00 0.00 0.10 0.48 2.28 3.62
βM 0.53 0.58 0.69 0.75 0.83 0.88 0.93 0.97 1.02 1.06 1.11 1.19 1.25 1.36 1.40
βSMB -0.58 -0.50 -0.29 -0.18 -0.05 0.04 0.13 0.20 0.28 0.36 0.45 0.59 0.69 0.90 0.98
βHML -0.90 -0.81 -0.56 -0.43 -0.27 -0.15 -0.06 0.03 0.12 0.22 0.34 0.50 0.63 0.87 0.97
βUMD -0.28 -0.25 -0.18 -0.14 -0.08 -0.05 -0.02 0.01 0.04 0.07 0.11 0.16 0.20 0.28 0.31

Panel C: Aggressive Growth Objective

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -17.81 -12.26 -4.35 -2.36 -0.96 -0.36 0.00 0.00 0.00 0.00 0.30 1.12 1.99 4.63 6.25
βM 0.65 0.69 0.80 0.86 0.93 0.98 1.03 1.07 1.11 1.15 1.20 1.27 1.33 1.44 1.48
βSMB -0.28 -0.21 -0.02 0.08 0.20 0.29 0.37 0.43 0.50 0.58 0.67 0.79 0.89 1.07 1.14
βHML -1.12 -1.03 -0.79 -0.66 -0.50 -0.39 -0.29 -0.20 -0.11 -0.01 0.10 0.26 0.39 0.64 0.72
βUMD -0.30 -0.27 -0.17 -0.12 -0.06 -0.01 0.03 0.06 0.10 0.14 0.19 0.25 0.30 0.40 0.43
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C.10 The prevalence of short-term skill and its evolution

Here, we present additional tables pertaining to our analysis of short-term skill and its evolution over

time (see Section 7.2 of the paper) using returns net of expenses for 3,497 funds.

Table C.14 presents the evolution over time of the posterior means of the population proportions

of zero-, negative-, and positive-alpha funds, while Table C.15 presents the evolution over time of the

percentiles of the estimated distribution of alpha. Tables C.14 and C.15 correspond to Figures 9a and

9b of the paper, respectively.

Table C.14: Proportions of Fund Types — Short-term Skill

Evolution over time of posterior means of population proportions of zero-, negative-, and positive-alpha funds, in a
model with short-term skill. Posterior means are estimated at the end of each year using data from the preceding 60
months. All estimations use returns net of expenses in the K− = 2, K+ = 1 model with two and one components
for the alpha distribution of negative-alpha and positive-alpha funds, respectively.

π0 π− π+

1975− 1979 0.29 0.58 0.13
1976− 1980 0.40 0.29 0.32
1977− 1981 0.29 0.42 0.29
1978− 1982 0.37 0.22 0.41
1979− 1983 0.49 0.15 0.36
1980− 1984 0.33 0.19 0.48
1981− 1985 0.40 0.30 0.30
1982− 1986 0.34 0.17 0.48
1983− 1987 0.46 0.18 0.37
1984− 1988 0.43 0.26 0.31
1985− 1989 0.39 0.34 0.27
1986− 1990 0.54 0.14 0.32
1987− 1991 0.26 0.55 0.19
1988− 1992 0.23 0.58 0.19
1989− 1993 0.49 0.32 0.18
1990− 1994 0.42 0.36 0.23
1991− 1995 0.20 0.73 0.07
1992− 1996 0.22 0.70 0.08
1993− 1997 0.24 0.65 0.11
1994− 1998 0.06 0.81 0.12
1995− 1999 0.05 0.91 0.04
1996− 2000 0.43 0.30 0.27
1997− 2001 0.40 0.39 0.21
1998− 2002 0.49 0.37 0.14
1999− 2003 0.50 0.33 0.17
2000− 2004 0.35 0.55 0.09
2001− 2005 0.09 0.88 0.03
2002− 2006 0.04 0.95 0.01
2003− 2007 0.17 0.73 0.10
2004− 2008 0.17 0.71 0.12
2005− 2009 0.22 0.57 0.21
2006− 2010 0.17 0.72 0.11
2007− 2011 0.22 0.62 0.16
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Table C.15: Percentiles of Estimated Distribution of Alpha — Short-term Skill

Evolution over time of various percentiles of the estimated distribution of annualized alpha (expressed as a percent),
in a model with short-term skill. The distributions are estimated at the end of each year using data from the preceding
60 months. All estimations use returns net of expenses in the K− = 2, K+ = 1 model with two components for the
alpha distribution of negative-alpha funds and one component for that of positive-alpha funds.

Percentiles

5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th

1975− 1979 -2.59 -2.07 -1.55 -1.22 -0.96 -0.70 0.00 0.00 0.00 0.92 1.81
1976− 1980 -1.71 -1.17 -0.63 0.00 0.00 0.00 0.00 0.34 0.74 1.21 1.66
1977− 1981 -2.07 -1.64 -1.18 -0.87 -0.49 0.00 0.00 0.00 1.40 2.29 3.07
1978− 1982 -3.03 -1.86 -0.59 0.00 0.00 0.00 0.42 1.05 1.65 2.65 3.70
1979− 1983 -3.17 -1.49 0.00 0.00 0.00 0.00 0.00 0.64 1.30 2.45 3.78
1980− 1984 -3.97 -2.34 0.00 0.00 0.00 0.00 0.74 1.20 1.79 2.81 3.89
1981− 1985 -2.50 -1.34 -0.49 0.00 0.00 0.00 0.00 0.00 1.05 2.08 3.17
1982− 1986 -4.58 -2.14 0.00 0.00 0.00 0.00 0.96 1.37 1.83 2.54 3.25
1983− 1987 -4.64 -2.43 0.00 0.00 0.00 0.00 0.00 1.20 1.83 2.68 3.47
1984− 1988 -4.04 -2.12 -0.67 0.00 0.00 0.00 0.00 0.49 1.35 2.42 3.51
1985− 1989 -3.67 -2.10 -0.91 -0.32 0.00 0.00 0.00 0.00 1.24 2.35 3.39
1986− 1990 -3.27 -1.24 0.00 0.00 0.00 0.00 0.00 0.42 1.08 2.03 3.05
1987− 1991 -2.84 -1.86 -1.08 -0.68 -0.42 -0.20 0.00 0.00 0.00 1.73 2.76
1988− 1992 -2.92 -1.84 -1.01 -0.62 -0.38 -0.20 0.00 0.00 0.00 1.45 2.50
1989− 1993 -2.54 -1.47 -0.63 -0.18 0.00 0.00 0.00 0.00 0.00 1.36 2.44
1990− 1994 -3.40 -2.02 -0.94 -0.39 0.00 0.00 0.00 0.00 0.45 1.42 2.40
1991− 1995 -3.75 -2.69 -1.76 -1.28 -0.95 -0.70 -0.48 -0.25 0.00 0.00 0.33
1992− 1996 -3.93 -2.80 -1.84 -1.33 -0.98 -0.71 -0.46 0.00 0.00 0.00 0.31
1993− 1997 -4.39 -3.31 -2.31 -1.75 -1.33 -0.98 -0.61 0.00 0.00 0.20 0.53
1994− 1998 -4.29 -3.51 -2.73 -2.26 -1.91 -1.62 -1.35 -1.06 -0.61 0.00 0.00
1995− 1999 -3.47 -3.05 -2.60 -2.32 -2.10 -1.91 -1.73 -1.54 -1.32 -0.88 0.00
1996− 2000 -2.85 -2.04 -1.20 0.00 0.00 0.00 0.00 0.00 0.68 1.20 1.67
1997− 2001 -3.74 -2.92 -2.05 -1.43 0.00 0.00 0.00 0.00 0.15 0.48 0.76
1998− 2002 -3.16 -2.26 -1.37 -0.81 0.00 0.00 0.00 0.00 0.00 0.78 2.20
1999− 2003 -2.36 -1.75 -1.10 -0.59 0.00 0.00 0.00 0.00 0.00 1.56 2.44
2000− 2004 -3.19 -2.52 -1.85 -1.44 -1.10 -0.74 0.00 0.00 0.00 0.00 1.88
2001− 2005 -5.01 -4.01 -3.04 -2.48 -2.08 -1.75 -1.46 -1.19 -0.88 0.00 0.00
2002− 2006 -4.45 -3.59 -2.77 -2.30 -1.95 -1.68 -1.43 -1.21 -0.97 -0.68 0.00
2003− 2007 -2.86 -2.38 -1.90 -1.59 -1.36 -1.15 -0.94 -0.65 0.00 0.00 2.25
2004− 2008 -2.01 -1.74 -1.44 -1.25 -1.10 -0.95 -0.80 -0.54 0.00 1.13 1.85
2005− 2009 -2.59 -2.03 -1.48 -1.14 -0.88 -0.61 0.00 0.00 0.29 0.90 1.31
2006− 2010 -2.64 -2.22 -1.80 -1.52 -1.31 -1.11 -0.91 -0.60 0.00 0.30 0.64
2007− 2011 -2.62 -2.21 -1.77 -1.49 -1.25 -1.02 -0.68 0.00 0.00 0.12 0.20
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C.11 Fund flow analysis

In this section, we present additional results on our analysis in Section 7.4 of the paper, for the relation

between fund flows and past fund performance as well as the relation between fund flows and subsequent

fund performance.

In Table C.16 (C.17), we present the average past (future) performance across all funds that belong to

each flow quintile for each 5-year non-overlapping period in our sample. These tables are similar, respec-

tively, to Panels A and B of Table 16, which presents results averaged across all 5-year non-overlapping

periods in our sample. They show the same effects as those shown in Table 16 and discussed in detail

in Section 7.4 of the paper.

In Table C.18, we analyze these effects in a regression framework. In Panel A of the table, we

examine the relation between fund flows and past performance using the specification

Fq
y = α0 + α1Perf q

y−5,y−1 + ε
q
y ,

where Fq
y is the flow in year y averaged across all funds in flow quintile q , and Perf q

y−5,y−1 is the posterior

performance (alpha relative to the 4-factor model) estimated using our methodology over the previous 5

years (from y − 5 to y − 1) averaged across all funds in flow quintile q. In Panel B of the table, we

examine the relation between fund flows and future performance using the specification

Perf q
y+1,y+5 − Perf q

y−5,y−1 = β0 + β1 Fq
y + uq

y,

where Fq
y is as above and the dependent variable is the difference between performance in the 5-year

period after and the 5-year period before year y, averaged across all funds in flow quintile q . To eliminate

the effect of time, performance measures in both specifications are de-meaned by subtracting the mean

performance across all funds operating contemporaneously.

The effects estimated from these regressions are consistent with those calculated from the quantile-

based analysis. For example, in Panel A of Table C.18, we see that an increase of 1% in the annualized

posterior mean of alpha in the 5-year period prior to flow measurement corresponds to an increase of

128% in the measured flows. In Panel B, we see that an increase of 100% in capital flows corresponds to

a decrease of 0.25% in the difference between the annualized posterior mean of alpha in the subsequent

and the preceding 5-year period.
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Table C.16: Fund Flows and Past Performance — Quantile Analysis

The relation between fund flows and past fund performance. At the end of each non-overlapping 5-year period from 1975 to 2010, we sort funds into
quintiles (Q1 through Q5) based on their flows (expressed as a percent of beginning-of-year total net asset value) in the subsequent year. In each 5-year
period, we measure fund performance using i) the posterior probability (expressed as a percent) of having a positive alpha, ii) the posterior probability
(expressed as a percent) of having a negative alpha, and iii) the posterior mean of alpha (expressed as an annualized percent), all estimated from our
model with 4-factors. For each period, we present average performance measures and average flows across all funds in each flow quintile. We also
present averages across all periods. In the columns labeled ‘Q5−Q1’, we report the difference between the top and the bottom flow quintile. ∗/∗∗/∗∗∗

indicate significance of this difference at the 10%/5%/1% levels. In the columns labeled ‘N’, we write the number of funds used in the calculations for
each 5-year period.

Panel A: Positive-α probability (as a %) Panel B: Negative-α probability (as a %)

Flow Quintiles Flow Quintiles
Period N Q1 Q2 Q3 Q4 Q5 Q5−Q1 Q1 Q2 Q3 Q4 Q5 Q5−Q1

1975 – 1980 244 8.23 9.28 10.31 13.47 15.70 7.47 ∗∗∗ 67.33 65.28 61.59 58.24 55.54 −11.81 ∗∗∗

1980 – 1985 266 40.53 45.67 46.90 48.73 60.93 20.40 ∗∗∗ 27.13 22.08 20.56 21.33 11.56 −15.57 ∗∗∗

1985 – 1990 422 31.74 37.04 36.19 46.06 49.83 18.09 ∗∗∗ 29.47 21.87 21.24 17.20 15.63 −13.84 ∗∗∗

1990 – 1995 679 13.58 13.98 16.73 20.74 23.04 9.46 ∗∗∗ 59.03 58.38 52.39 47.90 46.52 −12.51 ∗∗∗

1995 – 2000 1187 3.29 4.26 4.73 5.91 5.48 2.19 ∗∗∗ 89.43 86.91 85.36 82.43 83.88 −5.55 ∗∗∗

2000 – 2005 1332 8.59 9.03 11.02 12.28 14.01 5.42 ∗∗∗ 53.44 51.10 45.69 43.58 41.78 −11.66 ∗∗∗

2005 – 2010 1032 12.24 13.98 14.78 18.83 19.23 6.99 ∗∗∗ 56.79 53.13 51.01 44.28 43.40 −13.39 ∗∗∗

Average 16.88 19.04 20.08 23.69 26.89 10.01 ∗∗∗ 54.64 51.26 48.29 44.99 42.62 −12.03 ∗∗∗

Panel C: α (as a %/year) Panel D: Flows (as a %/year)

Flow Quintiles Flow Quintiles
Period N Q1 Q2 Q3 Q4 Q5 Q5−Q1 Q1 Q2 Q3 Q4 Q5 Q5−Q1

1975 – 1980 244 −0.84 −0.72 −0.60 −0.48 −0.36 0.48 ∗∗∗ −35.43 −24.19 −19.68 −10.45 46.59 82.02 ∗∗∗

1980 – 1985 266 −0.12 0.24 0.48 0.36 1.32 1.44 ∗∗∗ −21.68 −9.50 −2.04 10.46 85.10 106.78 ∗∗∗

1985 – 1990 422 −0.24 0.00 0.24 0.72 0.60 0.84 ∗∗∗ −20.56 −8.34 −2.32 6.69 39.05 59.61 ∗∗∗

1990 – 1995 679 −0.72 −0.84 −0.48 −0.24 −0.24 0.48 ∗∗∗ −30.25 −11.56 0.34 21.65 173.56 203.81 ∗∗∗

1995 – 2000 1187 −1.92 −1.80 −1.80 −1.68 −1.68 0.24 ∗∗∗ −33.26 −14.93 −5.49 9.58 157.08 190.34 ∗∗∗

2000 – 2005 1332 −1.08 −0.96 −0.72 −0.72 −0.60 0.48 ∗∗∗ −37.19 −19.03 −8.55 9.34 159.23 196.42 ∗∗∗

2005 – 2010 1032 −0.84 −0.72 −0.60 −0.36 −0.36 0.48 ∗∗∗ −30.65 −13.34 −4.03 8.77 154.76 185.41 ∗∗∗

Average −0.82 −0.69 −0.50 −0.34 −0.19 0.63 ∗∗∗ −30.03 −14.15 −6.46 8.25 116.38 146.41 ∗∗∗
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Table C.17: Fund Flows and Future Performance — Quantile Analysis

The relation between fund flows and subsequent fund performance. At the beginning of each non-overlapping 5-year period from 1980 to 2010, we
sort funds into quintiles (Q1 through Q5) based on their flows (expressed as a percent of beginning-of-year total net asset value) in the previous year.
In each 5-year period, we measure fund performance using i) the posterior probability (expressed as a percent) of having a positive alpha, ii) the
posterior probability (expressed as a percent) of having a negative alpha, and iii) the posterior mean of alpha (expressed as an annualized percent), all
estimated from our model with 4-factors. For each period, we present average performance measures and average flows across all funds in each flow
quintile. We also present averages across all periods. In the columns labeled ‘Q5−Q1’, we report the difference between the top and the bottom flow
quintile. ∗/∗∗/∗∗∗ indicate significance of this difference at the 10%/5%/1% levels. In the columns labeled ‘N’, we write the number of funds used in
the calculations for each 5-year period.

Panel A: Positive-α probability (as a %) Panel B: Negative-α probability (as a %)

Flow Quintiles Flow Quintiles
Period N Q1 Q2 Q3 Q4 Q5 Q5−Q1 Q1 Q2 Q3 Q4 Q5 Q5−Q1

1980 – 1985 243 45.12 45.95 51.23 51.21 45.58 0.46 24.52 20.56 17.99 18.33 24.25 −0.27
1985 – 1990 324 37.09 36.04 37.45 46.78 38.75 1.65 21.93 22.56 23.38 16.32 22.38 0.45
1990 – 1995 615 18.81 14.53 16.19 18.06 16.82 −2.01 51.87 58.13 53.89 51.90 54.54 2.67
1995 – 2000 924 4.63 4.86 4.06 4.43 4.42 −0.21 85.98 85.08 87.06 86.43 86.44 0.45
2000 – 2005 1353 14.18 11.06 10.50 9.28 8.59 −5.59 ∗∗∗ 40.07 46.94 47.56 50.10 53.34 13.27 ∗∗∗

2005 – 2010 1064 16.74 15.04 15.33 15.17 14.88 −1.86 ∗∗ 48.61 50.78 50.64 51.19 52.09 3.48 ∗

Average 22.76 21.25 22.48 24.16 21.51 −1.25 ∗∗∗ 45.50 47.34 46.75 45.70 48.84 3.34 ∗∗∗

Panel C: α (as a %/year) Panel D: Flows (as a %/year)

Flow Quintiles Flow Quintiles
Period N Q1 Q2 Q3 Q4 Q5 Q5−Q1 Q1 Q2 Q3 Q4 Q5 Q5−Q1

1980 – 1985 243 0.24 0.36 0.72 0.60 0.24 0.00 −26.21 −19.45 −14.34 −7.23 67.23 93.44 ∗∗∗

1985 – 1990 324 0.24 0.12 −0.12 0.72 0.36 0.12 −15.33 −3.23 2.49 12.68 111.89 127.22 ∗∗∗

1990 – 1995 615 −0.48 −0.72 −0.60 −0.48 −0.60 −0.12 −37.10 −15.87 −4.86 17.57 188.39 225.49 ∗∗∗

1995 – 2000 924 −1.80 −1.80 −1.80 −1.80 −1.80 0.00 −26.43 −6.40 6.35 30.05 224.75 251.18 ∗∗∗

2000 – 2005 1353 −0.60 −0.84 −0.84 −0.96 −1.08 −0.48 ∗∗∗ −36.78 −13.18 1.02 31.91 293.88 330.66 ∗∗∗

2005 – 2010 1064 −0.48 −0.60 −0.60 −0.60 −0.72 −0.24 ∗∗ −26.56 −11.97 −1.34 17.39 183.39 209.95 ∗∗∗

Average −0.48 −0.58 −0.54 −0.42 −0.60 −0.12 ∗∗∗ −28.04 −12.67 −2.34 17.59 178.43 206.47 ∗∗∗
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Table C.18: Fund Flows and Fund Performance — Regression Analysis

Regression analysis of the relation between fund flows and past and future fund performance. In Panel A, we
present estimates from an OLS regression of annual fund flows on fund performance over the previous 5 years.
In Panel B, we present estimates of an OLS regression in which the explanatory variable is the annual fund
flow and the dependent variable is the difference between fund performance in the subsequent 5-year period and
fund performance in the previous 5-year period. Measures of fund flows and fund performance are averaged
across all funds that belong to the same flow quintile each year. In both panels, we present results from three
specifications: In specification (1), the performance measure is the posterior probability (expressed as a percent)
of having a positive alpha; in specification (2), it is the posterior probability (expressed as a percent) of having a
negative alpha; and in specification (3), it is the posterior mean of alpha (expressed as an annualized percent).
All performance measures are estimated from our model with 4 factors, and are de-meaned by subtracting the
mean performance across all funds operating contemporaneously. Fund flows are expressed as a percent of
beginning-of-year total net asset value; in Panel B, ‘Flows ×100’ means that the quoted coefficients correspond
to an increase of 100% in flows. t-statistics are reported below the coefficients. ∗/∗∗/∗∗∗ indicate significance at
the 10%/5%/1% levels.

Panel A: Flows and past performance

(1) (2) (3)

Intercept 19.23 ∗∗∗ 19.37 ∗∗∗ 19.26 ∗∗∗

4.76 5.09 4.82
Positive-α probability 7.60 ∗∗∗

8.95
Negative-α probability −8.73 ∗∗∗

−10.64
α 128.17 ∗∗∗

9.30

Adj R2 0.34 0.43 0.36
Number of observations 155 155 155

Panel B: Flows and future performance

(1) (2) (3)

Intercept 1.22 ∗∗∗ −1.07 ∗∗∗ 0.05 ∗∗∗

2.57 −3.04 2.70
Flows ×100 −3.96 ∗∗∗ 5.13 ∗∗∗ −0.25 ∗∗∗

−7.87 9.33 −8.27

Adj R2 0.33 0.40 0.35
Number of observations 130 130 130
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C.12 Prior sensitivity analysis

Here, we present some additional results for the prior sensitivity analysis discussed in Section 8.1 of the

paper.

First, we present more detailed results from the sensitivity analysis that replaces the symmetric D (1)

prior with the asymmetric D (1, 3, 3) prior which overweights component probability vectors with lower

values for the proportion of zero-alpha funds. In Table C.19, we present statistics for the posterior of the

population proportions of zero-, negative-, and positive-alpha funds, and in Table C.20 we present various

percentiles of the estimated distribution of annualized alpha.

Table C.19: Proportions of Fund Types — Sensitivity to Asymmetric Prior

Analysis of the sensitivity of the posterior distribution of the population proportions of zero-alpha, negative-alpha,
and positive-alpha funds, to an asymmetric D (1, 3, 3) prior over these population proportions. The 95% HPDI is the
smallest interval such that the posterior probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-
adjusted numerical standard errors for the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.07 0.05 0.06 [0.00 , 0.21] 0.00
π− 0.80 0.80 0.05 [0.68 , 0.88] 0.00
π+ 0.13 0.13 0.04 [0.07 , 0.21] 0.00

Table C.20: Percentiles of Estimated Skill Distribution — Sensitivity to Asymmetric Prior

Analysis of the sensitivity of the percentiles of the estimated population distribution of annualized alpha (expressed as
a percent) to an asymmetric D (1, 3, 3) prior over the proportions of zero-, negative-, and positive-alpha funds. We
report the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest
interval such that the posterior probability that a parameter lies in it is 0.90.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -6.47 -5.03 -2.69 -1.99 -1.41 -1.10 -0.88 -0.70 -0.53 -0.36 0.00 0.29 0.82 2.40 3.37

5% -8.00 -5.79 -2.99 -2.18 -1.51 -1.20 -1.00 -0.82 -0.65 -0.46 -0.27 0.00 0.51 1.88 2.62

95% -5.46 -4.34 -2.36 -1.80 -1.30 -1.00 -0.78 -0.60 -0.44 -0.19 0.00 0.55 1.08 2.99 4.22
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Next, we present more detailed results for the analysis that checks the sensitivity of the posterior predictive

distribution of alpha on its prior predictive distribution. To achieve the desired change in the prior predictive

distribution, we replace the D (1) prior with the D (1, 3, 3) prior (as above), and also we vary the baseline hy-

perprior parameters for the population mean and variance of the negative and positive components of the alpha

distribution. In particular, in the baseline priors we use parameters κκα = 0, K κα
= 100, λK α

= 1, and 3K α
=

λ3α = 33α
= 1, and in the alternative specification for which we present results here we use κκα = −6, K κα

=

0.5, λK α
= 4, and (as in the baseline) 3K α

= λ3α = 33α
= 1. The former parameter values (combined with

our other prior parameters) imply that the prior predictive density is almost flat for all nonzero values of alpha ex-

cept those very close to zero, while the latter imply that the prior predictive density is concentrated over a small

range of values away from zero. As we show in Figure C.6, the change in the prior predictive density is drastic

but the effect on the posterior predictive density is very small. In Tables C.21 and C.22, we also present statis-

tics for the posteriors of the population proportions of zero-alpha, negative-alpha, and positive-alpha funds, and

various percentiles of the estimated distribution of annualized alpha when using the alternative prior parameters.
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(a) Prior predictive density, baseline vs alternative.
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(b) Posterior predictive density, baseline vs alternative.

Figure C.6: Plots of the prior and posterior predictive density of αi at αi 6= 0, for the baseline prior specification
(π ∼ D (1), κκα = 0, K κα

= 100, λK α
= 1, 3K α

= λ3α = 33α = 1) and for an alternative (π ∼ D (1, 3, 3),
κκα
= −6, K κα

= 0.5, λK α
= 4, 3K α

= λ3α = 33α = 1). In Panel (a), we plot the prior predictive density for the
baseline prior specification (in solid blue) and for the alternative prior specification (in dotted red). In Panel (b), we plot
the posterior predictive density for the baseline prior specification (in solid blue) and for the alternative prior specification
(in dotted red). For clarity, we do not represent the point mass at zero alpha, which has probability 0.33 for the baseline
and 0.14 for the alternative prior predictive density, and probability 0.09 for the baseline and 0.08 for the alternative
posterior predictive density.
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Table C.21: Proportions of Fund Types — Sensitivity to Prior Predictive Distribution

Analysis of the sensitivity of the posterior distribution of the population proportions of zero-alpha, negative-alpha, and
positive-alpha funds, to the alternative specification for the prior predictive distribution implied by replacing π ∼ D (1)
with π ∼ D (1, 3, 3) and the baseline values for hyperparameters κκα , K κα

, and λK α
with −6, 0.5, and 4, respectively.

The 95% HPDI is the smallest interval such that the posterior probability that a parameter lies in it is 0.95. NSE stands
for autocorrelation-adjusted numerical standard errors for the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.08 0.06 0.06 [0.00 , 0.21] 0.00
π− 0.80 0.82 0.06 [0.68 , 0.88] 0.00
π+ 0.12 0.11 0.03 [0.06 , 0.20] 0.00

Table C.22: Estimated Percentiles of Skill — Sensitivity to Prior Predictive Distribution

Analysis of the sensitivity of the percentiles of the estimated population distribution of annualized alpha (expressed
as a percent) to the alternative specification for the prior predictive distribution implied by replacing π ∼ D (1) with
π ∼ D (1, 3, 3) and the baseline values for hyperparameters κκα , K κα

, and λK α
with −6, 0.5, and 4, respectively. We

report the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest
interval such that the posterior probability that a parameter lies in it is 0.90.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -6.55 -5.05 -2.67 -1.98 -1.41 -1.10 -0.89 -0.71 -0.54 -0.37 0.00 0.29 0.92 2.39 3.26

5% -8.05 -5.92 -3.02 -2.19 -1.52 -1.21 -1.00 -0.83 -0.66 -0.49 -0.29 0.00 0.51 1.85 2.42

95% -5.43 -4.25 -2.33 -1.78 -1.30 -1.00 -0.78 -0.60 -0.43 0.00 0.00 0.63 1.22 2.98 4.15
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C.13 Dependence between model parameters

In this section, we present results from the estimation of the model that allows for a type-specific distribution

for all model parameters — skill αi , the factor loadings βi , and fund return error precision hi — as well as

a full correlation matrix between them, as presented in Section 8.2 of the paper. In Table C.23 we present

results on the posterior distribution of population correlations between alpha, the factor loadings, and the

error precision, in Table C.24, we present results on the posterior distribution of the population proportions

of zero-, negative-, and positive-alpha funds, and in Table C.25 we present the percentiles of the estimated

distributions of alpha and the factor loadings (separately for zero-, negative-, and positive-alpha funds).

We generally see that the correlations between alpha and the factor loadings and alpha and the error

precision are quite small in magnitude. Furthermore, though the estimated distributions of the factor loadings

differ between zero-, negative-, and positive-alpha funds, importantly, the skill distribution we estimate here

is similar to the one we estimate in the baseline model. This shows that the baseline model is robust to the

presence of weak correlation between alpha and the other model parameters.

Table C.23: Correlation Matrix — Specification with Full Correlation

Means and standard deviations (in parentheses) of the posterior distributions of population correlations between alpha,
the factor loadings, and the error precision, estimated with returns net of expenses using the K− = 2, K+ = 1 model that
allows alpha, the factor loadings, and the error precision to be correlated.

Panel A: Zero-alpha funds Panel B: Negative-alpha funds Panel C: Positive-alpha funds

βM βSMB βHML βUMD h βM βSMB βHML βUMD h βM βSMB βHML βUMD h

α 0 0 0 0 0 −0.13 −0.15 −0.01 −0.11 0.09 0.03 −0.09 −0.17 0.09 0.16
(0) (0) (0) (0) (0) (0.03) (0.03) (0.03) (0.03) (0.02) (0.12) (0.11) (0.12) (0.06) (0.17)

βM 0.02 0.24 −0.26 −0.08 0.36 −0.56 0.47 −0.25 0.07 −0.69 −0.09 −0.10
(0.05) (0.06) (0.05) (0.04) (0.02) (0.01) (0.02) (0.02) (0.04) (0.02) (0.03) (0.03)

βSMB −0.05 −0.09 −0.03 −0.06 0.33 −0.35 −0.07 −0.10 −0.20
(0.06) (0.06) (0.03) (0.02) (0.02) (0.01) (0.04) (0.05) (0.04)

βHML −0.30 −0.16 −0.55 0.07 −0.25 0.07
(0.06) (0.03) (0.01) (0.01) (0.03) (0.02)

βUMD 0.02 −0.19 −0.09
(0.02) (0.02) (0.03)
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Table C.24: Proportions of Fund Types — Specification with Full Correlation

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated with net returns using the K− = 2, K+ = 1 model that allows for full correlation between alpha, the factor
loadings, and the error precision. The 95% HPDI is the smallest interval such that the posterior probability that a
parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior mean
estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.15 0.15 0.01 [0.12 , 0.17] 0.00
π− 0.65 0.65 0.02 [0.62 , 0.69] 0.00
π+ 0.20 0.20 0.01 [0.18 , 0.23] 0.00

Table C.25: Percentiles of Estimated Distributions — Specification with Full Correlation

Percentiles of the estimated distributions of annualized alpha (expressed as a percent) and factor loadings, estimated with
net returns in the K−=2, K+=1 model that allows for full correlation between alpha, factor loadings, and error precision.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -6.37 -5.11 -2.77 -1.97 -1.28 -0.91 -0.66 -0.46 -0.25 0.00 0.05 0.52 1.01 2.68 3.73

Zero-Alpha Funds
βM -0.10 -0.03 0.18 0.29 0.43 0.52 0.61 0.68 0.76 0.84 0.94 1.07 1.19 1.39 1.47
βSMB -0.38 -0.34 -0.24 -0.19 -0.12 -0.07 -0.03 0.00 0.04 0.08 0.13 0.20 0.25 0.35 0.39
βHML -0.36 -0.32 -0.18 -0.11 -0.03 0.04 0.09 0.14 0.19 0.24 0.30 0.39 0.46 0.59 0.64
βUMD -0.25 -0.23 -0.16 -0.13 -0.09 -0.06 -0.03 -0.01 0.01 0.04 0.07 0.11 0.15 0.21 0.23

Negative-Alpha Funds
βM 0.69 0.72 0.80 0.84 0.89 0.92 0.95 0.98 1.01 1.04 1.08 1.12 1.16 1.24 1.27
βSMB -0.41 -0.37 -0.25 -0.19 -0.11 -0.04 0.02 0.08 0.17 0.38 0.55 0.67 0.75 0.89 0.93
βHML -0.70 -0.63 -0.44 -0.34 -0.22 -0.13 -0.05 0.02 0.09 0.16 0.25 0.38 0.48 0.67 0.74
βUMD -0.24 -0.22 -0.15 -0.11 -0.06 -0.03 -0.00 0.02 0.05 0.08 0.11 0.15 0.19 0.26 0.29

Positive-Alpha Funds
βM 0.36 0.43 0.60 0.70 0.81 0.89 0.96 1.03 1.09 1.16 1.24 1.36 1.45 1.63 1.69
βSMB -0.19 -0.14 0.01 0.09 0.19 0.26 0.32 0.38 0.43 0.49 0.56 0.66 0.74 0.89 0.95
βHML -1.54 -1.40 -1.00 -0.80 -0.54 -0.36 -0.21 -0.06 0.09 0.24 0.42 0.68 0.89 1.28 1.42
βUMD -0.44 -0.40 -0.29 -0.23 -0.16 -0.11 -0.06 -0.03 0.01 0.06 0.11 0.18 0.24 0.34 0.38
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C.14 Conditional asset-pricing model

In this section, we present results from the estimation of the model that allows for funds’ market factor

loadings to be time-varying, by allowing them to depend in a fund-specific manner on the T-bill rate,

the dividend yield, the term spread, and the default spread; see Section 8.3 of the paper for details. In

particular, in Table C.26, we present results on the posterior distributions of the population proportions

of funds with zero, negative, and positive alpha, in Table C.27 we present the percentiles of the estimated

distribution of alpha, the factor loadings, and the coefficients on the conditioning variables, and in Figure

C.7 we compare the estimated distributions of alpha and the factor loadings from the two versions of

our model: the baseline, in which each fund’s market factor loading is constant, and the conditional one,

in which this loading is allowed to be time-varying in a fund-specific manner.

Table C.26: Proportions of Fund Types — Conditional Model

Results on the posterior distributions of the proportions of funds with zero, negative, and positive alpha, estimated
with returns net of expenses using the conditional model presented in Section 8.3 of the paper. Each fund’s market
loading at month t may depend in a fund-specific manner on the following quantities at month t−1: the 1-month
T-bill rate; the dividend yield of the CRSP value-weighted index; the term spread, proxied by the yield difference
between constant-maturity 10-year Treasury bonds and 3-month T-bills; and the default spread, proxied by the yield
difference between Moody’s Baa- and Aaa-rated corporate bonds. The 95% HPDI is the smallest interval such
that the posterior probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical
standard errors for posterior mean estimates.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.08 0.06 0.06 [0.00 , 0.22] 0.00
π− 0.81 0.82 0.05 [0.69 , 0.90] 0.00
π+ 0.11 0.11 0.03 [0.05 , 0.18] 0.00
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Table C.27: Percentiles of Estimated Distributions — Conditional Model

Percentiles of the estimated distributions of annualized alpha (expressed as a percent), the factor loadings, and
the coefficients on the conditioning variables, estimated with returns net of expenses using the conditional model
presented in Section 8.3 of the paper. Each fund’s market factor loading at month t may depend in a fund-specific
manner on the following quantities at month t − 1: i) the one-month T-bill rate (TB); ii) the dividend yield (DY) of
the CRSP value-weighted index; iii) the term spread (TS), proxied by the yield difference between constant-maturity
10-year Treasury bonds and three-month T-bills; and iv) the default spread (DS), proxied by the yield difference
between Moody’s Baa-rated and Aaa-rated corporate bonds.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -6.55 -5.05 -2.77 -2.11 -1.56 -1.25 -1.03 -0.84 -0.67 -0.48 -0.17 0.21 0.80 2.38 3.32
βM 0.14 0.22 0.45 0.57 0.72 0.82 0.91 1.00 1.08 1.17 1.28 1.43 1.55 1.78 1.87
βSMB -0.61 -0.53 -0.32 -0.21 -0.07 0.03 0.11 0.19 0.27 0.35 0.45 0.59 0.70 0.91 0.99
βHML -0.84 -0.76 -0.53 -0.41 -0.27 -0.16 -0.07 0.01 0.10 0.19 0.30 0.44 0.56 0.79 0.87
βUMD -0.27 -0.24 -0.17 -0.13 -0.08 -0.05 -0.02 0.01 0.03 0.06 0.10 0.14 0.18 0.26 0.28
γTB -130.94 -119.26 -87.49 -70.49 -49.86 -35.07 -22.44 -10.69 1.09 13.67 28.46 49.00 65.92 98.21 109.42
γDY -37.65 -33.82 -23.55 -18.13 -11.52 -6.76 -2.67 1.12 4.94 8.99 13.77 20.36 25.84 36.03 39.72
γTS -0.17 -0.15 -0.11 -0.08 -0.05 -0.03 -0.02 0.00 0.02 0.03 0.05 0.08 0.10 0.15 0.16
γDS -0.44 -0.40 -0.29 -0.24 -0.17 -0.12 -0.08 -0.04 0.00 0.04 0.09 0.16 0.22 0.32 0.36

−1 0 1
0

0.5

1

1.5

βSMB

−1 0 1
0

0.5

1

1.5

βHML

−0.4−0.2 0 0.2 0.4
0

1

2

3

4

βUMD

−200 0 200
0

0.005

0.01

γTB

−50 0 50
0

0.01

0.02

0.03

γDY

−0.2 0 0.2
0

2

4

6

8

γTS

−0.5 0 0.5
0

1

2

3

γDS

−6 −4 −2 0 2 4
0

0.2

0.4

0.6

α

0 1 2
0

0.5

1

1.5

2

βM

Figure C.7: Comparison of the estimated densities of annualized alpha (expressed as a percent) and factor loadings
for two models: blue solid lines plot densities from a model in which funds’ market loadings are constant, red
dashed lines plot densities from a model in which they are time-varying. Both sets of densities are estimated using
our model with an unknown number of components for the alpha distribution of negative-alpha and positive-alpha
funds. The black vertical arrow at zero alpha represents a point mass for both estimated distributions; the point mass
for the model with constant market loadings has probability 0.09 and the other model’s point mass has probability
0.08. Both models are estimated using returns net of expenses for 3,497 funds.
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C.15 Distributional assumptions for errors, factor loadings

In this section, we present tables and figures relating to our analysis in Section 8.4 in the paper, of the sen-

sitivity of our results to distributional assumptions about the fund return errors and about the factor loadings

in Equation 1 in the paper.

First, we present results from an estimation in which we exclude, for each fund, the observations whose

residuals most deviate from the values of a normal random sample of size equal to the number of observations

for that fund; we remove no more than 8 observations per fund, and in total we remove 1.8% of all observations.

In this restricted data set, our assumption that each fund’s errors in Equation 1 are normal should be even

more accurate than in the whole data set, therefore this analysis can help determine whether the results we

present using the whole data set are driven by non-normality in the errors. In Table C.28, we present results

on the posterior distribution of the population proportions of funds with zero, negative, and positive alpha,

and in Table C.29 we present various percentiles of the estimated distribution of alpha. In Figure C.8, we

plot the estimated skill densities from the estimation that uses the whole data set and from the one that uses

the restricted data set. In Table C.28, we see that the proportions we estimate are largely unchanged. In Table

C.29 and in Figure C.8, we see that the estimated skill distribution is very similar in both cases, with the

most noteworthy difference being that the distribution estimated on the restricted data set has slightly fatter

tails, especially in the left. The reason for this is that the excluded observations correspond to residuals that

are large, so by excluding them the posterior estimates of fund-level αs have lower variance. As a result,

there is less shrinkage toward the mean, therefore not only do we place more fund-level αs in the tails, but

we are also more confident that they should be in the tails, so we estimate fatter tails. The effect is stronger

on the left than on the right tail, because more of the funds for which the exclusion of observations leads

to a big reduction in their error variance are located in the left than in the right tail.

Table C.28: Proportions of Fund Types — Excluding non-Normal Residuals

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated using our baseline model with net returns for 3,497 funds, but excluding, for each fund, the observations whose
residuals most deviate from the values of an equal-sized normal random sample. The 95% HPDI is the smallest interval
such that the posterior probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical
standard errors for the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.08 0.08 0.06 [0.00 , 0.22] 0.00
π− 0.78 0.78 0.05 [0.68 , 0.86] 0.00
π+ 0.14 0.13 0.04 [0.07 , 0.21] 0.00
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Table C.29: Percentiles of Estimated Skill Distribution — Excluding non-Normal Residuals

Percentiles of estimated distributions of annualized alpha (expressed as a percent) from our estimation on the whole
data set (in Panel A) and from the estimation on a restricted data set (in Panel B), which excludes, for each fund, the
observations whose residuals most deviate from the values of a normal random sample of size equal to the number of
observations for that fund. Both estimations use returns net of expenses for 3,497 funds. For each estimation, we report
the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest interval
such that the posterior probability that a parameter lies in it is 0.90.

Panel A: Estimation using the whole data set

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -6.60 -5.01 -2.62 -1.96 -1.42 -1.12 -0.96 -0.72 -0.55 -0.36 0.00 0.30 0.87 2.35 3.24

5% -8.48 -5.95 -2.97 -2.17 -1.54 -1.25 -1.04 -0.86 -0.69 -0.50 -0.29 0.00 0.49 1.77 2.40
95% -5.36 -4.04 -2.25 -1.77 -1.30 -1.00 -0.78 -0.60 -0.42 0.00 0.02 0.61 1.20 2.98 4.24

Panel B: Estimation using the restricted data set

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -8.97 -6.41 -2.98 -2.20 -1.61 -1.30 -1.07 -0.87 -0.66 -0.42 0.00 0.46 1.09 2.51 3.30

5% -11.46 -7.74 -3.46 -2.47 -1.73 -1.41 -1.20 -1.00 -0.81 -0.57 -0.28 0.00 0.81 2.04 2.61
95% -7.07 -5.23 -2.56 -1.98 -1.51 -1.19 -0.95 -0.74 -0.54 0.00 0.04 0.74 1.37 3.01 4.08
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Figure C.8: Plots of the estimated density of annualized 4-factor alphas, expressed as percents. In solid blue, we plot the
density estimated using all observations of the 3,497 funds in our data, i.e., the density from our baseline estimation. In
dotted red, we plot the density estimated using the same data but excluding the 1.8% of all observations whose residuals
most deviate from the normal distribution. The black vertical arrow at zero alpha represents a point mass for both
estimated densities; the point mass has probability 0.09 for the baseline estimation and probability 0.08 for the estimation
on the restricted data set.
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Now, we turn our attention to our assumption that the factor loadings β are normal. In Figure C.9, we

present Q-Q plots of posterior mean βs estimated using our methodology versus OLS estimates of the βs. The

plots lie quite close to the 45◦ line, showing that the quantiles of the two sets of distributions are very similar, and

therefore that shrinkage in our posterior estimates is very limited; only the posteriors for βUMD exhibit (a little)

more than a non-trivial degree of shrinkage. This implies that our distributional assumption is unlikely to have

a significant effect on our fund-level estimates of alpha, and therefore on our estimated distribution of alpha.
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Figure C.9: Quantile-Quantile plots of posterior mean βs estimated using our methodology versus OLS estimates
of βs. The blue cross marks plot the quantiles, and the solid red line plots the 45◦ line.

Next, we present results from an estimation in which the scale 3β of the inverse Wishart prior distribution

for the population variance Vβ of β is large (3β = 103 I instead of 3β = I as in our baseline estimation),

which effectively eliminates shrinkage in the posterior estimates of fund-level βs. In Figure C.10, we present

Q-Q plots for the posterior mean βs estimated using our methodology with “no shrinkage” priors for the βs

versus OLS estimates of the βs; comparing these Q-Q plots with those in Figure C.9, we see that now all

plots lie almost exactly on the 45◦ line, verifying that shrinkage in our estimates for the βs has effectively

been eliminated. In Table C.30, we present results on the posterior distribution of the population proportions

of funds with zero, negative, and positive alpha, and in Table C.31 we present various percentiles of the
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estimated distribution of alpha, from this estimation. In Figure C.11, we plot the estimated skill densities

from the baseline estimation and from the estimation that imposes no shrinkage. These tables and figures

show that the results on skill are almost identical for the two estimations: the one with the baseline priors,

which induces little shrinkage, and the one with these alternative priors, which induces no shrinkage. Thus,

we conclude that our baseline distributional assumption for the βs does not drive our main results in the paper.
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Figure C.10: Quantile-Quantile plots of posterior mean βs estimated using our methodology — but with priors that
impose very little shrinkage on β — versus OLS estimates of βs. The blue cross marks plot the quantiles, and the solid
red line plots the 45◦ line.

Table C.30: Proportions of Fund Types — No Shrinkage for βs

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated using our model presented in Section 2 with returns net of expenses for 3,497 funds, but with 3β = 103 I
instead of 3β = I as in the baseline estimation. The 95% HPDI is the smallest interval such that the posterior probability
that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior
mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.08 0.07 0.07 [0.00 , 0.25] 0.00
π− 0.79 0.79 0.06 [0.65 , 0.88] 0.00
π+ 0.13 0.13 0.04 [0.06 , 0.23] 0.00
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Table C.31: Estimated Percentiles of Skill — Baseline vs. Model with no Shrinkage for βs

Percentiles of estimated distributions of annualized alpha (expressed as a percent) from our baseline specification (in
Panel A) and from the specification with no shrinkage for βs, i.e., with prior parameter 3β = 103 I instead of 3β = I (in
Panel B). Both specifications are estimated with returns net of expenses for 3,497 funds. For each specification, we report
the posterior mean and 90% HPDI of the percentiles of the alpha distribution. The 90% HPDI is the smallest interval
such that the posterior probability that a parameter lies in it is 0.90.

Panel A: Baseline specification

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -6.60 -5.01 -2.62 -1.96 -1.42 -1.12 -0.96 -0.72 -0.55 -0.36 0.00 0.30 0.87 2.35 3.24

5% -8.48 -5.95 -2.97 -2.17 -1.54 -1.25 -1.04 -0.86 -0.69 -0.50 -0.29 0.00 0.49 1.77 2.40
95% -5.36 -4.04 -2.25 -1.77 -1.30 -1.00 -0.78 -0.60 -0.42 0.00 0.02 0.61 1.20 2.98 4.24

Panel B: Specification with no shrinkage for βs

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -6.47 -4.99 -2.66 -1.98 -1.42 -1.12 -0.90 -0.71 -0.54 -0.35 0.00 0.33 0.91 2.41 3.31

5% -8.03 -5.84 -3.01 -2.19 -1.54 -1.24 -1.03 -0.85 -0.67 -0.48 -0.28 0.00 0.53 1.86 2.45
95% -5.32 -4.19 -2.29 -1.77 -1.31 -1.01 -0.78 -0.60 -0.43 0.00 0.05 0.65 1.21 2.99 4.21
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Figure C.11: Estimated density of annualized 4-factor alphas (expressed as a percent). The blue solid line plots the
estimated population density of alpha from our baseline specification from Section 2. The red dotted line plots the
estimated population density of alpha from an estimation in which the scale 3β of the inverse Wishart prior distribution
for the population variance Vβ of β is large (3β = 103 I instead of 3β = I as in the baseline), so effectively with no
shrinkage for the estimation of fund-level β. The black vertical arrow at zero alpha represents a point mass for both
estimated densities; the point mass has probability 0.09 for the baseline model and probability 0.08 for the specification
with large 3β . For both plots, returns net of expenses for 3,497 funds are used.
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C.16 Cross-sectional error dependence

In Section 8.5 of the paper, we present a model that allows for cross-sectional dependence in the error terms

through linear latent error factors. To estimate this model, in the Gibbs sampler we i) add a block in which

we draw from the conditional posterior of the latent factors (see Geweke and Zhou, 1996); ii) we augment

the observed factors with the latent factors; and iii) we replace ρi =
(
αi , β

′

i

)′ with ρ∗i :=
(
αi , β

′

i , δ
′

i

)
′

and hi with h∗i , where as we explain in the paper, δi are fund-specific error factor loadings; and ξi t∼

N
(
0, h∗−1

i

)
is the cross-sectionally independent part of the error term, with h∗i a fund-specific precision. In

this section, we present results from the estimation of this model. In particular, we present results from the

specification with a single latent factor; results from the specification with 4 latent factors are very similar.

In Table C.32 we present results on the posteriors of the population proportions of funds with zero,

negative, and positive alpha, in Table C.33 we present the percentiles of the estimated distributions of

alpha and the factor loadings, and in Figure C.12 we compare the estimated distributions of alpha and

the factor loadings from two versions of our model: one in which errors are assumed to be independent

and one in which this is relaxed.

In Figure C.13, we present a sensitivity analysis of the effect of changing the prior for the distribution

of the latent error factor coefficients on the estimated population densities of alpha and factor loadings.

We find that there is an almost imperceptible effect to changing by several orders of magnitude the scale of

the inverse Wishart prior distribution for the population variance Vδ of the latent error factor coefficients δ.

Table C.32: Proportions of Fund Types — Cross-sectional Error Dependence

Results on the posteriors of the population proportions of funds with zero, negative, and positive alpha, estimated
with returns net of expenses using the model in which errors are cross-sectionally dependent through the latent error
factor model presented in Section 8.5 of the paper. The 95% HPDI is the smallest interval such that the posterior
probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for
the posterior mean estimates.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.08 0.07 0.06 [0.00 , 0.22] 0.00
π− 0.79 0.80 0.05 [0.68 , 0.87] 0.00
π+ 0.13 0.13 0.04 [0.07 , 0.21] 0.00
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Table C.33: Percentiles of Estimated Distributions — Cross-sectional Error Dependence

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent) and factor loadings,
estimated with returns net of expenses using the model in which errors are cross-sectionally dependent through the
latent error factor model presented in Section 8.5 of the paper.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -6.88 -5.35 -2.94 -2.23 -1.63 -1.31 -1.07 -0.87 -0.67 -0.46 0.00 0.36 0.98 2.53 3.40
βM 0.42 0.47 0.61 0.69 0.78 0.85 0.91 0.96 1.01 1.07 1.14 1.23 1.31 1.45 1.51
βSMB -0.63 -0.56 -0.35 -0.24 -0.11 -0.01 0.07 0.15 0.22 0.31 0.40 0.54 0.65 0.85 0.93
βHML -0.76 -0.70 -0.54 -0.45 -0.34 -0.27 -0.20 -0.14 -0.08 -0.02 0.06 0.16 0.25 0.41 0.47
βUMD -0.23 -0.21 -0.14 -0.10 -0.06 -0.03 0.00 0.03 0.05 0.08 0.11 0.16 0.19 0.26 0.29
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Figure C.12: Comparison of the estimated population densities of annualized alpha (expressed as a percent) and
factor loadings under two models: blue solid lines plot densities from a model in which errors are independent
across funds, and red dashed lines plot densities from a model in which errors are cross-sectionally dependent
through the latent error factor model presented in Section 8.5 of the paper. The black vertical arrow at zero alpha
represents a point mass, which has probability 0.09 for the former model and probability 0.08 for the latter model.
Both models are estimated using returns net of expenses for 3,497 funds.
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Figure C.13: Sensitivity analysis of the estimated population densities of annualized alpha (expressed as a percent)
and factor loadings for the model in which errors are cross-sectionally dependent through the latent linear error
factor model presented in Section 8.5 of the paper. The densities plotted in blue solid lines correspond to the
estimated densities from an estimation in which the scale of the inverse Wishart prior distribution for the population
variance Vδ of the latent error factor coefficients δ is small, while the densities plotted in red dashed lines correspond
to the estimated densities from an estimation in which the scale of the inverse Wishart prior distribution for Vδ
is large. The black vertical arrow at zero alpha represents a point mass with probability 0.08 for both estimated
distributions. Both sets of densities are estimated using returns net of expenses for 3,497 funds.
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C.17 Variations to model specification

In this section, we present results from two variations of our specification of the alpha distribution (see

Section 8.6 of the paper). First we replace our assumption that nonzero alphas are drawn from two

non-overlapping distributions — one for negative-alpha and one for positive-alpha funds — with the as-

sumption that they are drawn from a common distribution, and then we replace the point mass at zero with

a narrow normal centered at zero. Table C.34 presents posterior results for the population proportions of

zero-alpha and nonzero-alpha funds estimated using the alternative model with a point mass and a normal,

and Table C.35 presents various percentiles of the estimated distributions of alpha and the factor loadings

using the alternative model with a narrow normal and two non-overlapping mixtures of log-normals.

Table C.34: Proportions of Fund Types — Point Mass and Normal

Results on the posterior distributions of the population proportions of funds with zero and nonzero alpha, estimated
with returns net of expenses using a model in which alpha is drawn from a mixture distribution with two components:
a point mass at zero and a normal distribution. The 95% HPDI is the smallest interval such that the posterior
probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for
the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.08 0.06 0.07 [0.00 , 0.24] 0.00
πN 0.92 0.94 0.07 [0.76 , 1.00] 0.00

Table C.35: Percentiles of Estimated Distributions — Narrow Normal

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent) and factor loadings
estimated from a model in which alpha is drawn from a mixture with three components: a narrow normal centered
at zero and two non-overlapping mixtures of log-normal distributions (one for negative- and one for positive-alpha
funds). The model is estimated with returns net of expenses for 3,497 funds.

Percentiles
0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -6.52 -5.01 -2.65 -1.98 -1.42 -1.12 -0.90 -0.72 -0.55 -0.35 -0.08 0.29 0.87 2.34 3.23
βM 0.40 0.46 0.60 0.68 0.77 0.84 0.90 0.95 1.00 1.06 1.13 1.22 1.30 1.44 1.50
βSMB -0.60 -0.52 -0.31 -0.20 -0.07 0.03 0.11 0.19 0.27 0.35 0.45 0.58 0.69 0.90 0.98
βHML -0.85 -0.77 -0.54 -0.42 -0.27 -0.16 -0.07 0.02 0.11 0.20 0.30 0.45 0.58 0.80 0.89
βUMD -0.26 -0.23 -0.16 -0.12 -0.08 -0.04 -0.02 0.01 0.04 0.06 0.10 0.14 0.18 0.25 0.28
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C.18 Results excluding first two years per fund

Here, we present results from estimating our baseline model on a restricted data set that excludes returns

observations for the first two years of each fund’s life. The year of inception for most funds (89%) is

provided in the CRSP database. Among the funds for which this information is provided, about 70%

report returns in the database from their very first year of existence. As a result, for the 11% of funds

for which the year of inception is not provided, we assume that it coincides with the time at which they

start reporting their returns. Extrapolating the 70% figure stated earlier to all funds, it appears that this

assumption would yield an incorrect inception year for only 3% of all funds. In any case, these mistakes

would make our analysis here even more conservative, since by excluding for these funds the first two

years of returns observations available in the data, we would effectively be excluding observations for

more than the first two years since inception.

In Table C.36, we present statistics for the estimated posterior distribution of the population propor-

tions of zero-alpha, negative-alpha, and positive-alpha funds. We see that, as in the baseline estimation,

the large majority of funds have negative alpha.

Table C.36: Proportions of Fund Types — Excluding first two years of data

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated using our baseline model with net returns for 3,497 funds, but excluding the first two years of returns for
each fund. The 95% HPDI is the smallest interval such that the posterior probability that a parameter lies in it is
0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior mean estimate of each
parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.07 0.06 0.06 [0.00 , 0.20] 0.00
π− 0.81 0.81 0.05 [0.70 , 0.90] 0.00
π+ 0.12 0.11 0.04 [0.05 , 0.20] 0.00
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C.19 MCMC without reversible jumps

In this section, we present the results from the model with K− = 2 components for the alpha distribution

of negative-alpha funds and K+ = 1 component for the alpha distribution of positive-alpha funds. This is

the model with the highest posterior probability according to our baseline estimation, which incorporates

model specification uncertainty (see Table 3 in the paper). That is, viewing our analysis as a model selec-

tion analysis, this is essentially the model it selects. As we mention in the paper, for computational conve-

nience and/or tractability, we use this model in the construction of portfolios in Section 6.1, in the analysis

in Section 7.1 of the distribution of skill by fund investment objective, in the analysis in Section 7.2 of the

evolution of skill over time, and in the robustness check in Section 8.2 in which we allow for a full corre-

lation matrix between all model parameters, so its results can be useful as a benchmark for comparison.

In Table C.37, we present results on the posterior distribution of the population proportions of funds

with zero, negative, and positive alpha, in Table C.38 we present the percentiles of the estimated densities

for alpha and the factor loadings, and in Figure C.14 we present the estimated densities for alpha and

the factor loadings and we compare them with those from the baseline model that incorporates model

specification uncertainty (i.e., K−, K+ are estimated). In short, we find the proportions of funds with

zero, negative, and positive alpha to be 14%, 71% and 15%, respectively, which are not very far from the

ones from our baseline estimation; and the estimated distributions of factor loadings are almost identical,

and the estimated distribution of alpha is quite similar with those from the baseline model.

Table C.37: Proportions of Fund Types — K− = 2, K+ = 1 Model

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive alpha,
estimated with returns net of expenses using the model with two negative components and one positive component
for the distribution of alpha. The 95% HPDI is the smallest interval such that the posterior probability that a
parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior mean
estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.14 0.12 0.09 [0.01 , 0.33] 0.00
π− 0.71 0.72 0.06 [0.60 , 0.83] 0.00
π+ 0.15 0.15 0.05 [0.05 , 0.26] 0.00
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Table C.38: Percentiles of Estimated Distributions — K− = 2,= K+ = 1 Model

Percentiles of estimated population distributions of annualized alpha (expressed as a percent) and factor loadings,
for the model with two negative components and one positive component for the alpha distribution, estimated with
returns net of expenses.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

α -6.87 -4.54 -2.39 -1.90 -1.47 -1.21 -1.01 -0.83 -0.63 -0.18 0.00 0.29 0.78 2.39 3.37
βM 0.40 0.46 0.60 0.68 0.77 0.84 0.90 0.95 1.00 1.06 1.13 1.22 1.30 1.45 1.50
βSMB -0.60 -0.52 -0.31 -0.20 -0.07 0.03 0.11 0.19 0.27 0.35 0.45 0.58 0.69 0.90 0.97
βHML -0.85 -0.77 -0.54 -0.41 -0.27 -0.16 -0.07 0.02 0.10 0.20 0.30 0.45 0.58 0.81 0.89
βUMD -0.26 -0.23 -0.16 -0.12 -0.08 -0.04 -0.02 0.01 0.04 0.06 0.10 0.14 0.18 0.25 0.28
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Figure C.14: Comparison of the estimated densities of annualized alpha (expressed as a percent) and factor
loadings under two models: blue solid lines plot densities from our baseline model presented in Section 2, red
dashed lines plot densities from the K− = 2, K+ = 1 model with two negative components and one positive
component for the distribution of alpha. The black vertical arrow at zero alpha represents a point mass for both
estimated distributions; the point mass has probability 0.09 for the baseline model, and probability 0.14 for the
K− = 2, K+ = 1 model. Both models are estimated using returns net of expenses for 3,497 funds.
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