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Abstract

We propose a novel methodology that jointly estimates the proportions of skilled/unskilled

funds and the cross-sectional distribution of skill in the mutual fund industry. We model this

distribution as a three-component mixture of a point mass at zero and two components —

one negative, one positive — that we estimate semi-parametrically. This generalizes previous

approaches and enables information-sharing across funds in a data-driven manner. We find that

the skill distribution is non-normal (asymmetric and fat-tailed). Furthermore, while the majority

of funds have negative alpha, a substantial 13% generate positive alpha. Our approach improves

out-of-sample portfolio performance and significantly alters asset allocation decisions.
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1 Introduction

The evaluation of mutual funds’ ability to generate excess returns has great importance both for the
study of financial markets and for investors. For example, estimating the population distribution of
fund skill is useful for assessing the industry’s performance and the rationality of investing in funds,
while estimating the skill of individual funds is useful in asset allocation. The literature has followed
two approaches for estimating skill in the population: One focuses on distinguishing between
funds with zero and nonzero alpha and estimates the proportions of these types using fund-level
hypothesis tests, while the other estimates the alpha distribution assuming it has a simple shape,
usually normal. The literature has also followed two approaches for estimating the skill of individual

funds: One estimates each fund’s alpha in isolation using fund-level factor regressions, while the
other combines fund-level information with information from the population distribution, which is
presumed to be known a priori or is estimated under specific parametric assumptions (normality).

In this paper, we propose a novel methodology that generalizes previous approaches in several
important respects, and leads to improved inference both at the population and at the individual
level. First, it introduces the proportions of skilled/unskilled funds as model parameters that are
jointly estimated with the entire distribution of skill in a unified framework. Second, it estimates
the skill distribution using a flexible semi-parametric model that is able to fit a wide range of
distributions. Third, treating the population distribution as unknown and estimating it using a
flexible model enables us to share information across funds in a manner dictated by the data, hence
to improve our estimates of individual fund alphas, as whatever we learn about the population
feeds back into the estimation of each fund’s alpha (and vice versa).

Applying our methodology to the monthly returns of 3,497 actively managed open-end US
equity funds for the period January 1975 through December 2011, we obtain three main results.
First, even though the majority of funds have negative skill, there is a substantial proportion that
generates positive excess returns, net of fees and expenses. Second, the distribution of alpha is
highly non-normal, with fat tails, negative skewness, and a mode slightly below zero. Third, our
methodology has significant effects on asset allocation decisions and leads to improved portfolio
performance compared to alternative methodologies that do not incorporate information sharing
across funds and/or do so under restrictive parametric assumptions.

Prior practice and economic sense (e.g., Jensen, 1968; Ferson and Schadt, 1996; Barras, Scaillet
and Wermers, 2010) suggest that funds can be separated into three skill groups: i) those that gen-
erate negative excess returns because, e.g., they consistently trade on misinformation, suffer from
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exploitable behavioral biases, or have high transaction costs or fees, ii) those that generate zero
excess returns, consistent with the long-run equilibrium of Berk and Green (2004), and iii) those
that generate positive excess returns, e.g., because they possess superior information or trading skill.
Furthermore, it has been suggested that the alpha distribution of mutual funds may be non-normal,
due to the heterogeneous investment strategies and risk-taking of funds (Kosowski et al., 2006).
We accommodate all these features by modeling the cross-sectional distribution of alpha with a
three-component specification consisting of a point mass at zero and two components — one with
negative and one with positive support — that we estimate semi-parametrically. Specifically, we
represent each of the nonzero components of the skill distribution as a mixture of log-normals,
where we treat the number of components in each mixture as unknown parameters to be estimated.
We estimate our model using Bayesian techniques.

Our three-component specification introduces the proportions of zero-, negative-, and positive-
alpha funds as model parameters that contribute to the likelihood. As we show in simulations,
this significantly improves inference about the proportions relative to the extant fund-by-fund
hypothesis-testing approach. The first reason for this is that it uses more information: it uses all
the return information for all funds instead of summary scores (p-values or t-statistics) derived
separately for each fund from fund-by-fund tests. Second, it uses this information in a direct

manner: the proportions can be estimated directly using the information in the likelihood instead
of being calculated in a separate step from the number of hypothesis rejections. Third, it estimates
these proportions simultaneously with the entire distribution, hence information about the shape
of the distribution feeds into the estimation of the proportions. Notably, the two approaches yield
estimates that have quite distinct economic implications. For example, while Barras, Scaillet and
Wermers (2010) find that positive-alpha funds are almost non-existent (at 0.6% of the population)
and conclude that the industry is at the long-run equilibrium of Berk and Green (2004) as most
funds (75%) have zero alpha, we find a rather sizable proportion (13%) of positive-alpha funds and
that most funds (78%) have negative alpha, while only a small mass of funds, if any, have zero alpha.
These estimated proportions can also be useful for simple models of investor behavior examining,
e.g., the rationality of investing in mutual funds, or models of simplistic investor behavior (e.g.,
of categorical thinking as in Mullainathan, 2000 or Barberis and Shleifer, 2003).

The use of a mixture model with an unknown number of components is appealing because, as
is well known in the literature, such a representation can approximate a wide range of distributions
very well (e.g., Miller and Harrison, 2015). Our model is a substantial generalization of previous
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approaches, which assume a specific skill distribution (e.g., Baks, Metrick and Wachter, 2001) or
a specific form for it (e.g., a normal in Jones and Shanken, 2005), as it does not impose but rather
allows for a variety of features, such as skewness, fat tails, multiple modes, and the existence of a
point mass at zero alpha, and lets the data determine whether they are present in the true distribution.
Indeed, our simulations demonstrate the flexibility of our model compared to simpler alternatives:
simulating skill from data generating processes ranging from discrete values, to distributions with
and without skewness and kurtosis, and with and without a point mass at zero alpha, we find that
our model performs well in all cases. Applying our methodology to the real data, we find that the
estimated distribution of alpha is significantly non-normal, with fat tails and negative skewness.
Specifically, we find that about 99% of the funds in the population have alpha between −6% and
3% per year, while concentrating on the right tail, we find that about 5% of funds yield more
than 1% in excess of the benchmark return per year, and a little more than 1% of funds yield an
excess return above 2%. In contrast, the normal model estimates fewer funds with alphas far from
zero: for example, it places about 0.5% of fund alphas outside the range (−4%,+2%), while we
estimate about 3% (about 6 times as many) outside this range. Measures of skewness and tail
weight significantly differ from those for the normal, and distance measures between our estimated
skill distribution and the normal suggest that they differ about as much as a standard normal from
a t distribution with 2 degrees of freedom. Notably, these non-normality measures are robust, i.e.,
they ignore the extreme tails which cannot be estimated precisely.

Our approach should also improve the estimation of fund-level alphas, as it enables us to share
information across funds ‘objectively,’ i.e., in a way dictated by the data rather than imposed
by restrictive distributional assumptions. To be specific, we share information across funds in
two ways. One, we use information from all funds’ allocations to skill types and their alphas to
learn in a flexible manner about the population, i.e., the proportion of each type and the entire
distribution of alpha. And two, we use information from this population distribution together with
the information in each fund’s returns to learn about its allocation to skill types and its alpha.1

Out-of-sample tests confirm our methodology provides an advantage over simpler alternatives in
identifying funds with high alphas. In particular, we conduct 5-year rolling estimations for the
period 1975–2011 to compare the performance of monthly-rebalanced portfolios formed using our
methodology with that of portfolios formed using i) the normal model, and ii) the False Discovery

1We note that this estimation solves for an equilibrium density — the joint posterior of all model parameters —
which is a stochastic analogue of a fixed point. As we explain in Section 2.4, we implement it using a Gibbs sampler,
which is an iterative procedure that is itself the stochastic analogue of an algorithm that solves for a fixed point.
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Rate (FDR) methodology of selecting funds with high probability of having a positive alpha, which
Barras, Scaillet and Wermers (2010) show to be superior to a simple ranking of portfolios by their
Ordinary Least Squares (OLS) alpha or t-statistic.2 Estimating, for each portfolio, rolling 4-factor
OLS alphas at each month in the period 1990–2011, we find that the portfolio constructed using
our methodology delivers a mean annualized alpha of 3.2% over the years, versus 2.3% for the
FDR portfolio and 1.7% for the portfolio from the normal model.

An application of our improved fund-level inference is in asset allocation. Most previous studies
in Bayesian portfolio analysis approach the investment decision from the perspective of investors
with specific prior beliefs with respect to the distribution of fund skill. Instead, like Jones and
Shanken (2005), we do not take this distribution as given, but we learn about it from the returns of all
funds. However, we generalize the approach of Jones and Shanken (2005), who allow for restricted

learning under the assumption that skill is normal, and we allow for almost unrestricted learning un-
der a flexible specification for the skill distribution. Thus, our approach is more suitable for agnostic
investors who do not hold specific prior beliefs about the skill distribution or its shape. Studying
the simple asset allocation problem of an investor who allocates wealth between the risk-free asset,
the benchmark portfolios, and a single mutual fund, we show that unrestricted learning across funds
under our flexible model has an economically significant impact on the optimal allocation decision.

A well-founded concern with our (as with any) Bayesian estimation is that the results may be
sensitive to the priors. In the absence of concrete prior information, we utilize hierarchical priors,
which model the lack of prior information about model parameters through a distribution over
priors. More specifically, we have two layers of priors, where the first layer — the population
distribution of skill — is itself part of the model and estimated from the data, and the second layer
— the hyperpriors for the population parameters — contains very little information. Thus, the
hierarchical approach contains more data-driven information and yields more objective and robust
inference (Gelman, 2006; Robert, 2007). Indeed, we perform an extensive sensitivity analysis and
show that our results are robust to alternative prior specifications.

We also perform several robustness checks. We allow for dependence between skill, the factor
loadings, and error precision, since they may all be related to a fund’s investment strategy, but find
the correlations to be small. Furthermore, we use a conditional version of the asset pricing model
that allows for time-varying market risk exposures, and we relax the assumption that errors are
cross-sectionally independent; in both cases, a small probability mass is transferred from positive

2The FDR methodology (Benjamini and Hochberg, 1995; Storey, 2002) corrects for the expected proportion of
funds for which the null hypothesis of zero alpha is incorrectly rejected in multiple hypothesis testing.
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to negative values of alpha. We also show that our estimated distribution of skill is not driven
by our distributional assumption for the factor loadings and the errors. Finally, we estimate two
variations of our model: one in which we blur the distinction between zero- and nonzero-alpha
funds and replace the point mass with a narrow normal centered at zero, and one in which we
ignore the distinction between negative- and positive-alpha funds and assume they are drawn from
a common rather than from two non-overlapping distributions.

This paper contributes to a growing literature on mutual fund performance evaluation. Within
the frequentist framework, studies have focused on fund-by-fund hypothesis tests. Controlling for
false discoveries in multiple testing, Barras, Scaillet and Wermers (2010) estimate the proportion
of funds with zero, negative, and positive alpha. Combining hypothesis tests with a simulation
approach, Kosowski et al. (2006) examine whether it is likely that some funds have skill, by
comparing the distribution of alpha t-statistics derived from simulated returns of zero-alpha funds
with that derived from actual returns. Fama and French (2010) use a similar approach to estimate
the distribution of skill under the assumption that it is normal with mean zero. These studies use
some cross-sectional information — the t-statistic (or p-value) distribution — to produce partial
population-level inference, but this information is not useful for fund-level inference. Within the
Bayesian framework, studies have combined information about each fund with information from
the population distribution of skill. Typically, they assume that this population distribution is known
a priori with certainty (e.g., Baks, Metrick and Wachter, 2001; Pastor and Stambaugh, 2002a,b;
Busse and Irvine, 2006; Avramov and Wermers, 2006), therefore they do not share any information
across funds. Our paper is closer to the hierarchical model of Jones and Shanken (2005), who
propose that funds’ skill is drawn from a normal distribution whose mean and variance they estimate
from the returns of all funds, hence they share information across funds to draw inference both
at the fund- and at the population-level. We extend and generalize their approach, by replacing
the assumption that fund skill is normal with a flexible representation of the cross-sectional skill
distribution.3 As a result, we are also able to estimate the proportions of skilled/unskilled funds
simultaneously with the entire distribution, and to share information across funds in a manner that
is not restricted by the normal parametric assumption.

3Also see Sastry (2015), who proposes that skill is drawn from two normals; this makes it possible to estimate
a distribution with fat tails and skewness, but has limited flexibility to estimate these features in an unconstrained,
data-driven manner. Also, Cohen, Coval and Pastor (2005) informally incorporate information sharing across funds,
since they calculate a fund’s skill as a weighted average alpha across funds with correlated holdings, the intuition being
that high correlation between a fund’s holdings and those of funds with high/low performance should be informative
about the former’s skill. This approach improves fund-level inference, but is not relevant for population-level inference.
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The remainder of the paper is structured as follows. In Section 2, we present our model of fund
skill and our estimation algorithm. In Section 3, we use simulated data to compare our approach
with extant alternatives. Subsequently, we focus our analysis on real data from the US mutual
fund industry; we present these data in Section 4. In Section 5, we present our results on the
proportions of skilled/unskilled funds and the entire distribution of mutual fund skill. In Section
6, we study the implications of our methodology for fund-level inference by solving a simple
asset allocation problem and conducting out-of-sample tests of the performance of fund portfolios
constructed using our methodology and alternatives. In Section 7, we present additional results
using subgroups of funds with different investment objectives, funds that are active during different
subperiods, as well as fund returns before fees and expenses. In Section 8 we present robustness
checks and in Section 9 we conclude. An appendix contains additional details on the estimation,
and an online appendix contains additional tables and figures.

2 Econometric model and estimation
Here, we present the model of returns, our model of fund skill, a hierarchical version of our model
which enables us to perform Bayesian estimation, and our estimation algorithm.

2.1 Model of returns
We evaluate fund performance using the linear factor model

ri t = αi + F ′t βi + εi t , (1)

with ri t the month t return of fund i in excess of the risk-free return, αi the fund-specific alpha
or skill, Ft the month t factor returns, βi the fund-specific factor loadings, and εi t ∼ N

(
0, h−1

i

)
the fund- and time-specific errors, with hi the fund-specific precision.4

In the baseline specification, we use the Carhart (1997) 4-factor model, i.e., Ft contains the
excess return of the market portfolio (M) and the returns of zero-investment factor-mimicking
portfolios for size (SMB), book-to-market (HML), and momentum (UMD). We use alternatives
(the 3-factor model of Fama and French, 1993 and the conditional 4-factor model of Ferson and
Schadt, 1996) in robustness checks. As is standard in this literature, we do not take a position in the
debate about whether these portfolios are proxies for (all) risk factors, and we define skill/ability

4As argued in Fama and French (2010), assuming serial independence in errors should be innocuous. In robustness
checks in Section 8, we introduce cross-sectional dependence and we also show that our results are not driven by the
normality assumption.
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as the alpha in Equation 1, i.e., the average return in excess of a comparable passive portfolio.5

Skill αi , factor loadings βi , and error precision hi are fund-specific parameters that are assumed
to vary randomly in the population according to the model presented below.

2.2 Model of skill under specification uncertainty
We propose that fund skill αi is an i.i.d. draw from a mixture population distribution, i.e.,

p
(
αi
∣∣{πq, θq

α

})
:=

∑
q∈Q

πq f q (αi
∣∣θq
α

)
, (2)

where p (·) and p (· |·) denote generic marginal and conditional densities, respectively, Q is the
set of mixture components, f q is the density of the q-th component and θq

α its parameter vector,
and πq is the weight of the q-th component, with

∑
q∈Q π

q
= 1.6

It is common in the literature to classify funds into three groups based on their skill: good
funds whose alpha is positive, bad funds whose alpha is negative, and funds with zero alpha.
Furthermore, it has been suggested that the cross-sectional distribution of mutual fund skill is
non-normal, potentially exhibiting skewness, fat tails, and/or multimodality. To accommodate these
features, we propose that the mixture density in Equation 2 has three components Q = {0,−,+}

corresponding to funds with zero, negative, and positive alpha, and we incorporate model specifica-
tion uncertainty, that is we adopt a flexible semi-parametric specification for the alpha distribution
of the nonzero components. In particular, for funds with negative (positive) alpha, we assume
that αi is drawn from a mixture of log-normals with K− (K+) components, where we treat the
number of components as model parameters to be estimated. Notably, this can be viewed as a
model selection analysis, in which we select the ‘best’ model across mixture models with different
numbers of components. Thus, Equation 2 becomes

p
(
αi
∣∣{πq, θq

α

})
:= π0 f 0

(
αi

∣∣∣θ0
α

)
+ π− f −

(
αi
∣∣θ−α )+ π+ f +

(
αi
∣∣θ+α ) ,

5This definition of skill is used by most of the related literature (e.g., Baks, Metrick and Wachter, 2001; Jones
and Shanken, 2005; Kosowski et al., 2006; Barras, Scaillet and Wermers, 2010; Fama and French, 2010). Berk and
Green (2004) define skill as alpha before costs (including, importantly, information acquisition), Pastor, Stambaugh
and Taylor (2015) define it as alpha adjusted for fund and industry size (i.e., the alpha on the first dollar invested in
the fund and industry), while Koijen (2014) defines it, under market efficiency, as the price of the active-portfolio
risk (i.e., the compensation for holding assets that earn a risk premium).

6Identifying profitable opportunities is a zero-sum game, so if mutual funds hold a significant proportion of the
market their alphas should be negatively correlated. Actively managed US equity funds only held 19% of outstanding
US stocks at the end of 2013 (Investment Company Fact Book), so our assumption that alphas are independent is
unlikely to be restrictive. Using simulations, Jones and Shanken (2005) show that incorporating negative correlation
among fund alphas has a trivial effect on posteriors.
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where π0, π−, π+ are the proportions of funds with zero, negative, and positive alpha, f 0 is a
point mass at 0, and f −, f + have negative and positive support. In detail,

f 0
(
α
∣∣∣θ0
α

)
:=δ0

f −
(
α
∣∣θ−α ) :=

∑
1≤k≤K−

π−k
π−

flnN
(
|α|
∣∣∣θ−α,k), for α<0

f +
(
α
∣∣θ+α ) :=

∑
1≤k≤K+

π+k
π+

flnN
(
|α|
∣∣∣θ+α,k), for α>0,

where δ0 is the Dirac mass at 0; flnN is the density of the log-normal distribution; π−k and π+k are
the proportions of the k-th negative and positive component, with

∑
kπ
−

k =π
− and

∑
kπ
+

k =π
+;

θ
q
α,k :=

(
µ

q
α,k,V

q
α,k

)
contains the mean and variance of the k-th component; and θq

α :=
{
π

q
k , θ

q
α,k

}
for q∈{−,+} and θ0

α :=0 arbitrarily.
Intuitively, each fund is drawn from one of the three skill types with probability π0, π−, π+,

respectively, and conditional on belonging to the negative- or positive-alpha type, it is drawn from
the type’s k-th component with probability π−k

π−
or π+k

π+
, respectively. That is, there exist unobserved

‘allocation’ variables e0
i , e−i,k, e+i,k ∈ {0,1} that sum to 1 and indicate which type and mixture compo-

nent fund i belongs to. For example, a fund belonging to the k-th component of the positive-alpha
type has e+i,k = 1 and its α is drawn from the log-normal distribution whose underlying normal
has mean µ+α,k and variance V+α,k . Letting π :=

(
π0,

{
π−k
}
,
{
π+k
})

be the probability vector, the

allocation vector ei :=
(

e0
i ,
{
e−i,k
}
,
{
e+i,k
})

follows the multinomial M(1, π) distribution.
As we have explained in the introduction, this model for skill is appealing for the following

reasons. First, it provides flexibility and can fit a wide range of distributions for fund skill. Indeed,
density estimation through mixtures of finite mixtures — such as the one we employ — is similar
to non-parametric density estimation, both in terms of mathematical properties and in terms of
flexibility (e.g., Miller and Harrison, 2015); see also our simulations in Section 3. Second, this
model enables us to estimate the proportions of fund skill types directly and simultaneously with the
entire distribution, using all the return information for all funds. This approach leads to improved
inference over indirect alternatives that use fund-by-fund hypothesis tests (see, e.g., our simulations
in Section 3). An additional benefit of our approach is that it incorporates in a single unified
framework two strands of literature that have been disparate so far: the approach of estimating the
proportions of skilled/unskilled funds and that of modeling the skill distribution. Finally, using a
flexible model for the population distribution leads to improved fund-level inference, as the sharing
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of information across funds is driven to a larger extent by the data rather than by the priors (see,
e.g., our portfolio performance analysis in Section 6.1).

To complete the model, we need to specify the distributions of the fund-specific factor loadings,
βi , and error precisions, hi . In the baseline case, we assume βi and hi are independent from each
other and from αi , with βi drawn from a normal N

(
µβ, Vβ

)
with mean µβ and variance Vβ , and hi

drawn from a Gamma G (κh, λh) with shape κh and scale λh . We note that, since εi t∼N
(

0, h−1
i

)
,

we compound a normal distribution with a Gamma precision, so the errors pooled across funds
have the t distribution, whose fat tails make it suitable for robust analysis. In Section 8.2, we relax
the assumption that αi , βi , and hi are independent and allow for a full correlation matrix between
all model parameters, and in Section 8.4 we show that our results are not driven by our normality
assumption about the factor loadings and the errors.7

To summarize our model, in Figure 1 we show its directed acyclic graph representation, where
squares represent observed quantities and circles represent parameters to be estimated.

2.3 Hierarchical priors

To render the estimation of our model feasible, we utilize Bayesian methods, which produce
posterior inference by combining the information contained in the data with priors. In the absence
of concrete prior information about the model parameters, it is important to choose weak priors in
order to let the data determine the posteriors, as well as to conduct a sensitivity analysis to check
that the posteriors are robust to alternative prior specifications.

We utilize hierarchical priors, which model the lack of prior information about model parameters
according to the Bayesian paradigm, i.e., through a distribution over priors. In this approach, we
have two layers of priors. In the first layer, which is essentially part of the model presented above,
we propose that fund-level alphas are drawn from a flexible mixture distribution with unknown
population parameters which are estimated from the data using information from all funds. In the
second layer, we propose a weak ‘hyperprior’ distribution for these population parameters. Thus,

7It is interesting to note that, in their model of skill for private equity funds, Korteweg and Sorensen (2016) assume
errors are homogeneous across funds and drawn from a mixture of normals. This assumption is both more and less
general than ours, as it can capture potential asymmetries — not just fat tails — but does not allow for fund-specific
precision heterogeneity. Our analysis in Section 8.4 shows that, in our application, the assumption of symmetric errors
is not restrictive. In contrast, allowing for fund-specific heterogeneity is important since i) ex ante, the wide range
of possible strategies followed by mutual funds implies that their error distributions are likely to be different, and ii)
ex post, indeed we estimate very different precision parameters across funds.
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the hierarchical approach contains more data-driven information, hence allows a more “objective
approach to inference” (Gelman, 2006) and has been shown to improve the robustness of the
resulting posteriors (Robert, 2007).8

For the population proportions π , we use the symmetric Dirichlet prior D(1), which implies an
uninformative uniform distribution over all possible values of π . For the population means

{
µ

q
α,k

}
,

µβ and variances
{

V q
α,k

}
, Vβ of the nonzero components of the skill distribution and of the factor

loadings, we use the independent Normal-inverse-Wishart prior. To make priors even weaker, we
introduce an additional hierarchical layer such that the parameters of the hyperpriors for the popula-
tion mean and variance of skill are themselves random parameters to be estimated by combining the
data with even deeper hyperparameters. For the population shape κh and scale λh of the error preci-
sion distribution, we use the Miller (1980) conjugate prior with baseline parameters that correspond
to a ‘prior sample’ with a handful of funds, so it contains very little information relative to the data.
For the numbers K− and K+ of the mixture components in the alpha distribution of negative- and
positive-alpha funds, we employ the commonly used truncated Poisson distribution, which penalizes
mixtures with more components and is truncated for convenience of computation and presentation.

For a detailed presentation of the prior distributions and the baseline hyperparameter values,
see Section A of the appendix. Also see Section 8.1 for an extensive sensitivity analysis that shows
that our posteriors are robust to alternative prior specifications.

2.4 Estimation
To estimate our model, we need to derive the joint posterior distribution of the model parame-
ters conditional on the factor returns and the fund returns. This posterior is proportional to the
likelihood times the joint prior but cannot be calculated analytically. Instead, we use a Markov
chain Monte Carlo (MCMC) algorithm to generate draws that form a Markov chain with stationary
distribution equal to the posterior. In particular, we employ the Reversible Jump MCMC algorithm
with Metropolis-Hastings-within-Gibbs sampling (see Metropolis et al., 1953; Hastings, 1970;
Geman and Geman, 1984; Green, 1995; and Richardson and Green, 1997). We briefly discuss
our algorithm below, and we present details in the appendix.

Since the joint posterior is not from a known distribution, we use a Gibbs sampler which parti-

8We note that using a hierarchical prior is different from using a marginal prior that compounds the two hierarchical
layers, since the latter does not estimate the first layer — the population distribution — from the data, and therefore
contains more prior-driven instead of data-driven information.
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tions the parameters into blocks such that we can sequentially draw from the conditional posterior
of each block given the data and the other blocks. The basic intuition of the Gibbs sampler is the fol-
lowing. Consider, for simplicity, that we only have two blocks of parameters, A and B. From Bayes’
rule, we know that we can draw from their joint posterior by drawing from the marginal posterior of
A and then from the conditional posterior of B given A. So, assuming we have an initial draw for
A, we can use it to generate a valid draw for B from the joint posterior, which we can in turn use to
generate a valid draw for A from the joint posterior. Continuing like this, we make draws forming
a Markov chain which, under weak conditions (see Geweke, 1999), converges to the joint posterior
regardless of the initial draw. To provide more concrete intuition about how this sampler works, we
succinctly describe some of the steps we use. First, funds’ allocations {ei } to skill types constitute a
sample from the multinomial M (1, π) distribution, and are used to learn about the population pro-
portions π . Second, funds’ alphas {αi } and their allocations {ei } provide information about the pop-
ulation distribution for each type. For example, with one negative component, the alphas of negative-
alpha funds constitute a sample drawn from lnN

(
µ−α , V−α

)
, and are used to learn about µ−α and V−α .

A complication arises from the fact that αi s are drawn from three sub-populations with no
common support. To be able to explore the whole support of {αi }, we need to simultaneously learn
about {ei } and {αi } by combining information from the data with information from the proportions
and the entire alpha distribution. The idea is that, for each fund, we combine information in its
likelihood with the population distribution to learn about the probability that the fund belongs to
each type and about the distribution of its alpha conditional on belonging to each type. Intuitively,
the posterior probability that a fund has zero alpha is higher when the proportion of zero-alpha
funds in the population is high, the fund’s likelihood at zero is high, and the overlap between its
likelihood and the population density over nonzero alphas is low. Furthermore, the density of a
fund’s alpha conditional on it being nonzero is determined by the overlap between its likelihood
and the population density over nonzero alphas. One of our technical innovations is to design a
Metropolis-Hastings step that enables us to draw from the joint conditional posterior of {ei } , {αi }.
In this step, we make candidate draws using a generating density similar to that in Gottardo and
Raftery (2008) for drawing from mixtures of mutually singular distributions. These candidates
are accepted or rejected based on an acceptance probability that generally moves the chain toward
areas of the parameter space where posterior probability is high.

A second complication arises from the fact that, to estimate the unknown numbers of compo-
nents and their distribution parameters, we need to construct a Markov chain that jumps between
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models with different dimensions. For this purpose, we use the Reversible Jump MCMC algorithm,
which introduces two dimension-changing steps: one that splits or merges existing components,
and one that creates a new or deletes an existing empty component. We extend the standard
algorithm to account for the fact that we have two mixture distributions with an unknown number
of parameters, as well as a point mass.

We make 5 million MCMC draws, discard the first 10% as burn-in, and retain every 50th to
mitigate serial correlation. Convergence of the draws to the posterior is monitored by inspecting
their trace plots and density plots and using standard diagnostic tests.9 Using these draws, in our
results we present posterior information, e.g., the mean, median, standard deviation, and density
plots of the posterior distributions for all parameters of interest.

3 Simulation analysis
In this section, we conduct a simulation analysis: We combine various data generating processes
for skill with the factor model in Equation 1 to generate samples of fund returns, and we use our
methodology and alternatives to estimate the proportion of skilled funds and the skill distribution.
In Section 3.1, we compare our approach to estimating the proportions of skilled/unskilled funds
with the fund-by-fund hypothesis-testing approach, and in Section 3.2 we compare our approach
to estimating the skill distribution with a model that assumes skill is normal.

The parameters we employ in our simulations resemble the corresponding parameters in the real
data we use subsequently (see Section 4). In each sample, the number of funds (3,500) equals the
number of funds in the data, and the number of observations per fund is drawn from its empirical
distribution in the data. The factor returns (Ft ) are drawn from a normal with mean and covariance
equal to their sample counterparts in the data. To derive the distribution of the other simulation
parameters, we conduct fund-level OLS estimations of Equation 1 using the real data: The factor
loadings (βi ) are drawn from a normal with mean and covariance equal to their sample counterparts
in the fund-level OLS estimates, and the errors (εi t ) are drawn from normals with mean zero and
fund-specific precisions drawn from a Gamma with parameters fitted by maximum likelihood to
the fund-level OLS error precision estimates. To mitigate the effect of simulation noise in the
creation of the data, each methodology is applied to 50 simulated data sets.

9The algorithm was coded in Matlab and C++. Making 5 million draws takes 30 hours on the c4.8xlarge instance
on Amazon’s EC2 service. We note that, both in the simulations and in the estimation with the real data that we discuss
below, convergence is relatively fast and 500,000 draws are more than sufficient to obtain accurate estimates, so run
times can be quite short at the expense of a slight increase in numerical standard errors.
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3.1 Comparison with fund-by-fund hypothesis testing
The extant approach to estimating the proportions of fund skill types is to i) perform multiple
fund-level OLS regressions of fund returns on factor returns, and ii) count the proportion of funds
for which the null hypothesis H0,i : αi = 0 versus the alternative HA,i : αi 6= 0 is rejected. To
adjust for the fact that the probability of incorrectly rejecting the null hypothesis is inevitably
increased when performing multiple tests, Barras, Scaillet and Wermers (2010) apply the FDR
approach. The main idea of the FDR approach is the following: Since the distribution of p-values
arising from null hypotheses (funds with zero alpha) is uniform on [0, 1], then assuming that all
p-values above some threshold arise from funds with zero alpha, one can extrapolate the proportion
of incorrect null rejections (i.e., those corresponding to ‘lucky’ or ‘unlucky’ funds with zero alpha)
and adjust the calculated proportion of null rejections to estimate the true proportion of funds
with nonzero alpha.10 However, the assumption that all p-values above a threshold correspond to
zero-alpha funds is equivalent to the assumption that p-values under the alternative hypothesis of
nonzero skill are concentrated near zero, hence that the alphas of nonzero funds are far from 0. This
is unlikely to be true, since the distribution of skill, hence the density of p-values, is likely to have
more complex features. In this case, the FDR methodology overestimates the proportion of true null
hypotheses because the power of the test stays below 1 even for high values of the aforementioned
threshold. Our approach deals with this issue by introducing the proportions of the skill groups as
population parameters that contribute to the likelihood. As a result, we do not rely on low-power
fund-by-fund hypothesis tests, nor do we deterministically allocate all funds with p-value above
some threshold to the zero-alpha type to extrapolate the proportion of zero-alpha funds. Instead,
we estimate the proportions directly and simultaneously with the entire distribution, using more
of the information in the data (all the returns for all funds). In particular, as we have explained
previously, we use an iterative procedure. In one step, we use information about the population (i.e.,
the proportions and the distribution of alpha) together with the information in each fund’s returns to
determine the posterior probability that the fund belongs to each skill type as well as the posterior
distribution of its alpha. In another step, we use this information for all funds to determine the
posterior about the population (i.e., the proportions and the parameters of the alpha distribution).11

10For a detailed description of the FDR approach, applied in the context of mutual fund performance, see Barras,
Scaillet and Wermers (2010).

11Certainly, our methodology is not immune to the problem caused by data that have (almost) the same distribution
under the null and under the alternative, in which case there may not be enough information to differentiate between
the two, but it is less prone to mis-estimation for the reasons we have just explained.
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In Table 1, we compare our estimated proportions of fund skill types with those estimated
by fund-by-fund hypothesis tests, with and without the FDR correction. For this comparison, we
employ data generating processes (DGPs) in which alphas are drawn from a mixed distribution with
a point mass at zero and with nonzero alphas drawn from a variety of distributions. Our starting
point is the DGP that Barras, Scaillet and Wermers (2010) utilize in their simulation analysis to
demonstrate the strength of the FDR methodology. In this DGP (henceforth DGP D-1), alphas
are generated from a discrete distribution that places probability 75%, 23%, and 2%, respectively,
on values 0%, −3.2%, and 3.8% per year; that is, the proportion of zero-alpha funds is large, and
nonzero alphas are discrete and far from zero. For the other DGPs, we want to vary the proportions
of funds with zero and nonzero alpha, the magnitude of nonzero alphas, as well as their distribution,
to make it harder to differentiate between zero- and nonzero-alpha funds. Succinctly, we draw
nonzero alphas from i) discrete distributions with large values (DGP D-1) and small values (DGP
D-2), ii) normals with high variance (DGP N -1) and small variance (DGP N -2), and iii) log-normals
far from zero (DGP L-1), close to zero (DGP L-2), and similar to the ones we estimate from the
real data using our model (DGP L-3); the proportions of zero-, and nonzero-alpha funds also vary
across DGPs. In Table 1, we provide detailed descriptions of these DGPs, and we report the true and
the average (across 50 simulations) estimated proportions of funds with zero, negative, and positive
alpha from the various estimation methods. On the one hand, we see that our model estimates the
true proportions accurately, even when, e.g., nonzero alphas are discrete or normal. On the other
hand, the alternative approach performs well when the values of nonzero-alpha funds are far from
zero (i.e., for DGPs D-1, N -1, and L-1), but it becomes overly conservative as these values get
closer to zero (i.e., for DGPs D-2, N -2, and L-2). Indeed, the FDR correction does not significantly
improve performance in the latter cases because, as we explained earlier, its assumption that nonzero
alphas are far from zero fails. It is also interesting to note that, for the case in which alpha is drawn
from a distribution close to the one our methodology estimates from the real data (i.e., for DGP L-3),
the FDR approach estimates the proportions of zero-, negative-, and positive-alpha funds to be 73%,
26%, and 1%, respectively; these are not only far from the true proportions in the simulated data
(9%, 78%, and 13%), but also similar to the proportions that Barras, Scaillet and Wermers (2010)
estimate using the FDR methodology on the real data (75%, 24%, and 1%). In Section C.2 of the
online appendix, we also report the percentiles of the simulated distributions and the distributions
estimated using our methodology. We see that, as with the proportions of skilled/unskilled funds,
the percentiles of the simulated and estimated distributions are also very similar.
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3.2 Comparison with the hierarchical normal model
Jones and Shanken (2005) are the first to estimate the entire distribution of fund skill; they do so un-
der the assumption that alpha is drawn from a normal. However, the skill distribution may exhibit
complex features such as skewness and fat tails, which a normal distribution would fail to adequately
fit. Our model deals with this issue by replacing the normality assumption with a semi-parametric
representation which yields considerable flexibility and can fit a wide range of distributions.

In Figure 2, we compare our estimated skill distribution with that estimated by the hierarchical
normal model. For this comparison, we employ plausible DGPs that also provide good tests for
the flexibility of the two alternative models. More specifically, we draw alpha from i) a normal
distribution (DGP C-1) and ii) a continuous distribution with negative skewness and fat tails (DGP
C-2), where in both DGPs the quantiles of alpha are similar to those estimated from the real data.
The normal distribution is a particularly interesting case, not only because it is a good test of our
model’s flexibility as it has no point mass at zero, no skewness, and no fat tails, but also because
most previous studies have assumed that the alpha distribution is normal. In Figure 2, we provide
detailed descriptions of these DGPs, and we present Quantile-Quantile (Q-Q) plots of the alpha
distributions estimated using our model (in Panels a and b) and the hierarchical normal model (in
Panels c and d) against the simulated alpha distributions. On the one hand, in Panels (a) and (b),
we see that the Q-Q plots with our estimated posteriors lie very close to the 45◦ line, demonstrating
that our model fits the simulated distributions well. In particular, we see that our model is flexible
enough to perform well even when alphas are simulated from a single normal distribution (see
Panel a). Furthermore, there is no point mass in either simulated alpha distribution; the fact that
our model estimates the point mass to be very small in both cases (4% for DGP C-1 and 6% for
DGP C-2) and, even more importantly, fits the overall distributions well suggests that allowing for
a point mass in our model is not particularly restrictive. On the other hand, the hierarchical normal
model performs well when the true alpha distribution is normal (see Panel c) but is not robust to
mis-specification, as it largely mis-estimates the non-normal distribution (see Panel d); clearly,
using in Panel (d) a DGP that is more skewed and/or fat-tailed than DGP C-2 would yield a Q-Q
plot that deviates even more strongly from the 45◦ line. In Section C.2 of the online appendix,
we also present the percentiles of the simulated and the estimated alpha distributions using our
model and the hierarchical normal model, which verify the results we discuss here.12

12The priors we use for the hierarchical normal model are weak and similar to the ones we use for our model (see
Section A in the appendix). This, together with the prior sensitivity analysis we conduct, indicates that the results
from comparing our model to the hierarchical normal are not driven by the priors.
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4 Data description
In our subsequent analyses, we use monthly return data and accompanying fund information
from the Center for Research in Security Prices (CRSP) Survivorship-Bias-Free US Mutual Fund
Database, for the period January 1975 to December 2011. We focus on actively managed open-end
US equity funds, so we exclude index, fixed income, international/global, accrual, money market,
and sector funds. To exclude these, we use the reported fund classifications and information
obtained from keyword searches in funds’ names.

One issue with the CRSP database is that it treats share classes of the same fund as separate
funds. Since these share classes hold the same portfolio, their performance is identical, so we
need to identify and merge them rather than treat them as independent observations. To identify
funds’ share classes, we use the MFLINKS database from Wharton Research Data Services. Since
MFLINKS only covers part of the CRSP database, in both the time and the cross-sectional dimen-
sion, we complement it with our own algorithm designed to detect patterns in fund names that
indicate different share classes belonging to the same fund. For the subset of our data covered by
MFLINKS, our algorithm generally agrees with it, but we also identify 850 cases of disagreement.
We manually check these and find that they mostly correspond to share classes that MFLINKS
omits even though it contains other share classes of the same fund, and to share classes of the
same fund that are treated by MFLINKS as separate funds. After we identify funds’ share classes,
we compute the monthly return for each fund as the weighted average of the returns of its classes,
with weights equal to the beginning-of-month total net asset value of each class.

We use fund returns as reported in the CRSP database, which are net of fees, expenses, and
transaction costs. To improve the accuracy of the returns information in the data, we omit any
monthly return that directly follows a missing return, as it may compound multiple months’ returns.
We also keep funds with at least 60 monthly return observations, not necessarily contiguous but
with no gaps greater than a year.13 Our final data set consists of 3,497 funds. In the online appendix,
we present summary statistics for the characteristics of the funds in our sample.

To construct the benchmarks against which we measure fund performance, we use the CRSP
NYSE/Amex/NASDAQ value-weighted index as the market factor and the one-month Treasury bill
rate as the risk-free rate, while monthly returns for the SMB, HML, and UMD factor-mimicking
portfolios are downloaded from Kenneth French’s website.

13All studies in the literature use such a filter, though the number of monthly observations required ranges from 8
(e.g., Fama and French, 2010) to 36 (e.g., Koijen, 2014) to 60 (e.g., Kosowski et al., 2006). Using a filter of 36 months
has little impact on our main results, so any survivorship bias due to the 60-month requirement should be small.
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5 The prevalence of skill
In this section, we present our estimation results for the baseline specification presented in Section
2. In Section 5.1 we discuss our estimated proportions of funds with zero, negative, and positive
skill, and in Section 5.2 we turn to our estimates of the entire distribution of alpha, to obtain a
complete picture of the prevalence of skill in the mutual fund industry.

5.1 The proportions of skilled and unskilled funds
In Table 2, we present our estimated proportions of zero-, negative-, and positive-alpha funds. We
see that most funds (78%) have negative skill, but a substantial proportion (13%) generate positive
excess returns. These are very different from the estimates obtained from fund-level hypothesis
tests: for example, Barras, Scaillet and Wermers (2010) classify 75.4% of funds as zero-alpha,
24% as negative-alpha, and only 0.6% as positive-alpha. Thus, while the extant estimates would
imply that investing in a randomly chosen mutual fund is relatively safe but not worth it, we
find that doing so has a large downside risk but also considerable upside.14 Indeed, it has long
been considered a puzzle that people invest in active mutual funds despite the evidence that they
underperform (e.g., Gruber, 1996), leading some to question the rationality of this behavior. Our
finding that there is a substantial proportion of positive-alpha funds suggests that investing in
mutual funds could actually be rational for (at least some) investors.15

Our findings also relate to the equilibrium theory of Berk and Green (2004), in which fund
alphas equal zero in the long run because funds face decreasing returns to scale and competitive
investors direct their capital to alpha-generating funds. The earlier finding that a large majority
of funds have zero alpha indicates that the industry is at this long-run equilibrium, but our finding
that most funds have nonzero alpha suggests the opposite. This could be the case, for example,

14In a concurrent study, Ferson and Chen (2015) use a simulation approach to improve on the FDR methodology. They
assume alphas can take three values — zero, a specific negative, or a specific positive value — and utilize tests of all three
point null hypotheses to estimate the negative and positive alpha value and their proportions. This approach shares a sim-
ilarity with ours as it explicitly models nonzero alphas, but its assumption that negative and positive alphas take a single
value each is very different from our flexible model for nonzero alphas. Furthermore, our approach uses more information
and more directly as it does not rely on fund-by-fund tests and simulations. They still find four times as many zero-alpha
funds as we do (36% vs. 9%) and almost zero positive-alpha funds versus the 13% we find, so their conclusions are also
different. Though their approach improves on the FDR approach, it may still be conservative. This is supported by their
simulations: they write that “when the true fraction of zero-alpha funds is 10%, the [FDR] estimator . . . produces an
average estimate [of zero-alpha funds] of 75% [. . . while their] estimate is 27%; still biased but much more accurate.”

15Baks, Metrick and Wachter (2001) show that investing in mutual funds is rational for individuals holding certain
specific prior beliefs about the distribution of skill. Since we estimate the skill distribution from the data, we do
not make an assumption about individuals’ prior beliefs. Therefore, our results could be useful in an analysis of the
rationality of mutual fund investing that would apply more broadly to investors who do not hold specific prior beliefs.
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because frictions such as taxes and agency costs prevent investors from quickly moving their money
out of (into) under-performing (over-performing) funds or because behavioral biases such as the
disposition effect make investors reluctant to sell their shares in under-performing funds. We note
that this conclusion is not driven by a strict interpretation of the theory that alpha equals exactly zero,
since it continues to hold if we replace the point mass at zero with a narrow normal centered at zero
(see Section 8.6), nor is it driven by newer funds since it continues to hold if we exclude the returns
observations for the first two years of each fund’s life (see Section C.18 in the online appendix).

Importantly, the differences between our estimates and those in the literature are not due to a
disagreement between methodologies on the level of alpha that is economically different from zero.
Looking at our estimate of the entire skill distribution in the next section, we see that the differences
between the two sets of estimates remain substantial for reasonable subjective assessments of the
level of alpha that is economically significant. For example, if we classify as zero-alpha funds
those with |α| < 0.5% per year, we still find that 63% have negative and 8% have positive alpha.
As mentioned above, the difference arises from the fact that our approach uses more information
and estimates the proportions directly and simultaneously with the alpha distribution, while the
FDR approach becomes quite conservative when there is limited information at the fund level,
hence the power of the fund-level tests is low. A back-of-the-envelope calculation helps to illustrate
that the FDR methodology fails to correctly classify funds, even when alphas are economically
very large. In the CRSP data, the median fund has about 150 monthly observations, its fund return
volatility is about 5% per month, and about 90% of this volatility is explained by the 4-factor model.
Therefore, for such a fund, the standard error of the OLS coefficient estimate for α is approximately

0.13% per month (
√

0.052·0.1
150 ). Assuming normality and using λ = 0.5 which as noted by Barras,

Scaillet and Wermers (2010) yields close to “optimal” results for the FDR methodology, a fund
with an economically significant alpha of, e.g., ±2% (±1%) per year has p-value greater than λ
with probability 25% (42%). This means that 25%

1−λ = 50% (42%
1−λ = 84%) of funds with α = ±2%

(α = ±1%) are misclassified as zero-alpha funds by the FDR approach.

5.2 The distribution of fund skill
The proportions of skilled/unskilled funds in the population can be useful, e.g., for investors who
think in terms of categories or process coarse information (and for models of such behavior), but
they only provide partial information about the prevalence of skill in the mutual fund industry. For
a more complete picture, we turn to our estimates of the skill distribution. In Table 3, we present
the posterior for the unknown number of components in the skill distribution for negative- and
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positive-alpha funds. We see that the model with the highest posterior probability has two negative
components and one positive, so this could be considered the ‘selected’ model.16

In Figure 3 and Table 4, we present information about our estimated population distribution of
alpha. Formally, this is the posterior predictive distribution, i.e., the distribution of an unobserved
fund’s alpha after observing all our data. In Figure 3b, we plot the estimated density; since the
point mass at zero is a Dirac mass which can be thought of as an infinitely high and infinitely
thin spike, we adopt the convention to represent it with a vertical arrow of arbitrary length and
to indicate its mass in the legend. In Figure 3c, we plot a histogram of values simulated from this
distribution; for our mixed distribution, this helps to visualize how probability mass is divided
over the real line, particularly around zero. In Table 4, we present point and interval estimates
for various percentiles of this distribution.17

We find that 99% of the funds in the population have alpha between −6.60% and 3.24% per
year, and half have alpha smaller than −0.72%. Concentrating on the right tail, we find that 10%
of funds yield a return of more than 0.30% in excess of the benchmark per year, 5% of funds yield
more than 0.87% in excess return, and 1% of funds yield an excess return above 2.35%. We also
observe that the distribution is asymmetric and has a mode between −0.5% and −1% per year.
This mode is due to the fact that a substantial proportion of funds have before-fees/expenses alphas
close to zero (see Table 15) and the distribution of fees and expenses has a mode at 0.95% (see
Section C.4 in the online appendix). Importantly, in Figure 3a we plot the prior predictive densities
that correspond to the baseline and to an alternative prior specification, both of which yield almost
the same posterior predictive density, plotted in Figure 3b. We see a wide deviation between the
two prior distributions as well as between each of the priors and the posterior, indicating that the
posterior is robust and driven by the data rather than by the priors.18

16In most of our subsequent analyses, we present results on the skill distribution that are not conditional on the most
likely model but rather incorporate the model uncertainty we allow for in our baseline specification, since these estimates
provide better inference and have higher efficiency properties (Richardson and Green, 1997; Marin, Mengersen and
Robert, 2005). Results conditional on the selected model are not very different (see Section C.19 in the online appendix),
so for computational convenience, we employ it in some of our subsequent analyses (in Sections 6.1, 7.1, 7.2, and 8.2).

17For clarity, we note that we calculate all statistics (here and throughout the paper) for the estimated alpha
distribution, not for the posterior means of the fund alphas in the sample.

18Observing Figure 3b, it is interesting to note that alphas are more often equal to exactly zero than just slightly
below or above it. This is driven by the fact that our model allows for a point mass at zero, in conjunction with the noise
in the data and the law of parsimony embodied in Bayesian inference. That is, the noisy returns of funds with alpha
very close to zero are explained equally well by the point mass at zero and by the mixture model that represents nonzero
alphas; therefore by the law of parsimony, these funds are allocated with higher probability to the point mass, since
it is a simpler ‘model.’ We also note that, even if one believes a priori that a point mass at zero alpha is implausible, this
allocation has little impact in economic terms on our estimated distribution, since the alternative allocation would not
affect, e.g., the histogram in Figure 3c, the percentiles in Table 4, and the measures of non-normality in Tables 5 and 6.
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Non-normality of the skill distribution Next, we compare our estimated distribution of alpha
with the normal, and particularly with the distribution estimated using a hierarchical model that
assumes alphas are normal, as in Jones and Shanken (2005). First, in Table 4, we present percentiles
of the two distributions. We see that the normal model estimates fewer funds with large (in absolute
value) alphas. For example, the normal model places about 0.5% of fund alphas outside the range
(−4%,+2%), while we estimate about 3% of alphas (i.e., about 6 times as many) outside this
range. This discrepancy becomes even larger if we consider larger alphas: The normal places
0.025% of alphas outside the range (−6%,+3%), while we estimate more than 1% of alphas
(i.e., more than 40 times as many) outside this range. These differences can be seen graphically
in Figure 4 which presents a Quantile-Quantile (Q-Q) plot that compares the estimated normal
against the distribution estimated from our model, and in Figure 5 which shows zoomed-in density
plots to show tail detail. The S-shape of the Q-Q plot indicates that our distribution has fatter tails
than the normal and a more prominent peak, while the fact that the left tail deviates farther from
the 45◦ line than the right tail indicates negative skewness.

To see more formally that the distribution we estimate is different from the normal, we calculate
measures of skewness and tail weight, we calculate measures of the distance between the two
distributions, and we conduct a normality test. To study the distribution’s skewness and tail weight,
we do not rely on the traditional moment-based measures proposed by Pearson, because their values
are greatly influenced by the extreme tails which cannot be estimated precisely since, by definition,
there are very few data points there. Instead, we use quantile-based measures, which are robust
as they ignore the extreme tails. Groeneveld and Meeden (1984) propose the skewness measure

F−1(1− p)+F−1(p)−2F−1(0.5)
F−1(1− p)−F−1(p)

,

where F−1 (x) is the x th quantile of the distribution and 0< p< 1
2 . Essentially, this calculates

the difference between the deviation of the right and the left tail quantile from the median, and
scales it by the inter-quantile range, therefore it takes values in [−1, 1], with negative (positive)
values indicating left (right) skewness. Brys, Hubert and Struyf (2006) propose left and right tail
weight measures which do the same for the left and right half of the distribution, respectively. As
a result, these measures have similar characteristics, but their values are more readily interpreted
by calculating differences from the values that correspond to the normal distribution. In Table
5, we see that the estimated measures are all significantly different from those of the normal, at
least at the 5% level, indicating that our estimated alpha distribution is significantly non-normal.
Specifically, the measure of skewness (−0.20) and the left and right tail weight measures (0.34
and 0.27 in excess of the normal values) indicate that, ignoring the extreme tails, the asymmetry
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in the estimated alpha distribution is similar to that in the χ2 (35) distribution and its tails are as
fat as those of the t (2) distribution.19 Another way to get a sense of how strongly our estimated
distribution deviates from normality is to compute measures of the distance between our estimated
distribution and the estimated normal (see Table 6). We find that the Wasserstein distance between
the two distributions is 0.22 and significantly different from 0 at the 1% level; this is comparable to
the Wasserstein distance between the standard normal and i) a normal with the same mean but 25%
smaller or greater standard deviation, ii) the χ2 (4) distribution, or iii) the t (3) distribution.20,21

Finally, the normality null is also rejected with the robust Jarque-Bera test at the 1% level (and even
more strongly with non-robust tests). Given that our model is flexible enough to estimate a normal
distribution with considerable accuracy (see Section 3), our finding that the estimated distribution
deviates substantially from a normal suggests that our more general and flexible specification is
necessary to model the true distribution of alpha. As we have noted earlier, our results are not
driven by the normality assumption about the factor model errors; see Section 8.4 for more details.

The alpha distribution we estimate is also remarkably different from the distribution of the OLS
estimates of αi in our sample. In Table 4, we present percentiles of the OLS estimates, and in Figure
4 we present a Q-Q plot comparing their distribution against our estimated distribution. We see that
the former has much higher dispersion and takes more extreme values than the latter. For example,
more than 10% of OLS alpha estimates are outside the range (−6%,+3%) while we estimate
that a little more than 1% of fund alphas are outside this range. Thus, ignoring the sampling error
inherent in OLS estimates and using their distribution as an estimate of the distribution of alpha
in the population can be quite misleading.

Finally, in Figure 6 and Table 7, we see that there is significant heterogeneity across funds in
all factor loadings, suggesting that funds follow quite diverse strategies. For example, the mean
loading on the market is 0.95 and its standard deviation 0.21. Furthermore, 75% (25%) of funds

19We want to use as much of the distribution’s range as can be estimated with reasonable accuracy, so we use
p= 0.005, i.e., 99% of the range. Using a smaller range yields the same results, except that the skewness measure
gradually becomes insignificant, indicating that the asymmetry is primarily in the tails (but not just the extreme tails,
as all robust measures exclude them).

20The Wasserstein distance between densities fX , fY is inf fXY
E [‖X−Y‖], where fXY is any joint with marginals

fX , fY . Intuitively, it is the minimum work needed to turn fX into fY , where work is probability mass moved times
the distance it is moved. This measure is very intuitive, but we also calculate alternatives, with similar results. E.g., for
the Hellinger distance — defined as 1−

∫ √
fX fY dx , essentially a weighted average of the densities’ odds ratio — the

distance between our and the estimated normal distribution is 0.08, which is similar to the distance between the standard
normal and i) a normal with the same mean but half or twice the standard deviation, ii) a χ2 (3), or iii) a t (1) distribution.

21For additional context, in Section C.6 of the online appendix we present robust measures of skewness and tail weight
for various known distributions, as well as distance measures between the standard normal and these distributions.
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have a positive (negative) loading on the SMB factor, while about half load negatively and half
positively on the HML and UMD factors. Given such disparity in funds’ strategies, a natural
question is whether a fund’s strategy is related to its alpha. We address this in Section 7.1 where
we repeat our analysis for subgroups of funds that follow different investment strategies, and in
Section 8.2 where we allow for dependence between alpha and the factor loadings.

In the online appendix, we present additional results, e.g., posteriors for the population mean
and standard deviation of alpha and the factor loadings, and trace plots of the MCMC draws.

6 Portfolio analysis
In this section, we use our methodology to study the out-of-sample performance of fund portfolios
constructed using simple rules (in Section 6.1) and an optimal asset allocation problem (in Section
6.2). The former analysis can be thought of as an out-of-sample test of whether our methodology can
successfully identify funds with high alphas. The latter analysis provides a sense of the economic
significance of incorporating information sharing and specification uncertainty in portfolio selection.

6.1 Portfolio performance
The mixture model we propose should improve the estimation of individual funds’ alphas, for the
following reasons. First, it utilizes more information than a fund-by-fund analysis since it uses
all the information in each fund’s returns instead of a summary score (the p-value) and combines
it with information on all funds to derive a posterior. Second, it uses a flexible semi-parametric
representation for alpha hence shares information across funds more objectively than a model
that imposes restrictive distributional assumptions. Here, we examine out-of-sample whether our
methodology can successfully identify funds with high alpha by forming portfolios of funds based
on their alpha and calculating their performance over time. Furthermore, we compare the per-
formance of fund portfolios formed using our methodology to that of portfolios formed using
i) a hierarchical model in which alphas are drawn from a normal, and ii) the FDR methodology
of selecting funds with high probability of having a positive alpha, which Barras, Scaillet and
Wermers (2010) show to be superior to a simple ranking of portfolios by their OLS-estimated
alpha or t-statistic. Before we proceed, it is important to keep in mind the caveat that (as pointed
out by Fama and French, 2010) this type of analysis is subject to noise as it allocates funds to
portfolios using only a few years of data. Therefore, the results in this section should be viewed as
a complement to our theoretical arguments in Section 2 and our simulation analysis in Section 3.
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To construct and evaluate portfolios, we proceed as follows. At the beginning of each month in
the period 1980–2011, we use the preceding 5 years of returns to estimate the 4-factor model, and
we form and hold until the end of the month an equal-weighted portfolio of funds that are estimated
to have a positive alpha with high probability. For the hierarchical models, we simultaneously use
the data for all funds to derive the posterior probability that each fund’s alpha is not positive; we
then sort funds by this probability and, starting from the top, we select the group of funds such
that the average probability (across this group of funds) is closest to 0.1 and not greater than 0.2.
Similarly, for the FDR methodology, we use fund-level OLS regressions and select the group of
funds such that the estimated false discovery rate (i.e., the probability of incorrectly allocating a
fund to the positive-alpha type) is closest to 0.1 and not greater than 0.2.22 For months during which
these criteria yield an empty group of funds, we either leave the portfolio empty — we call this the
‘conservative’ portfolio — or we select the funds whose posterior mean alpha (for the hierarchical
methodologies) or OLS t-statistic (for the FDR methodology) is in the top 1% among all funds in
the data set for the preceding 5 years — we call this the ‘aggressive’ portfolio. In what follows, we
mostly focus on the performance of the aggressive portfolios, and in the online appendix (Section
C.7) we show that our results are similar for the conservative portfolios as well as for alternative
portfolio construction rules: portfolios formed using a 3-year (instead of a 5-year) rolling estimation
window, portfolios that keep the top 2% (instead of the top 1%) of funds in the aggressive portfolio,
and portfolios that keep in all months the top 1% of funds sorted by their posterior mean alpha.23

Our portfolio is more selective than the alternatives: Across the years it contains, on average,
11 funds, and the FDR (‘normal’) portfolio contains 19 (27) funds. But it is not merely a subset of
the alternatives, since its overlap with the FDR (‘normal’) portfolio — i.e., the number of common
funds divided by the number of all funds in the two portfolios — is, on average, 33% (27%). These
differences in portfolio composition reflect the different ways in which each methodology uses
the information in the data to derive the fund-level estimates. For example, our approach is more
selective than the FDR because it shrinks each fund’s posterior toward the estimated population
distribution, whose mass is mostly concentrated on negative alphas, and it is more selective than the

22We have chosen this as our baseline portfolio formation rule for comparability with Barras, Scaillet and Wermers
(2010), who show that the FDR portfolio constructed using this rule performs very well. As they note, given a loss
function that penalizes including funds with non-positive α and excluding funds with positive α, this portfolio formation
rule roughly corresponds to a Bayes action that minimizes expected loss for some level of the penalties.

23In the online appendix, we also present results on performance for portfolios formed using a model in which alphas
are drawn from two normals; they are similar to those for the portfolios from the model with one normal.
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normal model which estimates thin tails but a higher dispersion over intermediate values and more
mass over positive alphas. We also note that there is considerable turnover in the composition of all
portfolios over time: For our portfolio, 38% of funds remain in the portfolio after a year, 16% remain
after 3 years, and 9% remain after 5 years; these percentages are also very similar for the alternatives.

In Figure 7, we examine the evolution over time of the conservative portfolios (Panel a) and
the aggressive portfolios (Panel b) formed using all methodologies: at each month in the period
1990–2011, we plot OLS 4-factor alphas using the monthly portfolio returns from January 1980
through that month. We see that the portfolios constructed using our methodology consistently
deliver positive alpha which, focusing on the aggressive portfolios, varies across the years between
2.50% (in 1998) and 4.54% (in 1991), with a mean value of 3.22%. Furthermore, we see that our
portfolios consistently produce higher alpha relative to both the FDR portfolios and the portfolios
formed using the hierarchical normal model. Specifically, the alpha of the FDR portfolio ranges
over the years from 1.67% (in 1999) to 3.34% (in 2001), with a mean value of 2.31%, while the
alpha of the portfolio formed using the hierarchical normal model ranges from 1.06% (in 1998)
to 2.76% (in 1991), with a mean value of 1.72%.

In Table 8, we present various performance measures — annualized OLS 4-factor alpha (α̂)
and α̂ t-statistic, information ratio, and Sharpe ratio — for the whole sample as well as for the
two halves of our sample period separately (1980–1995 and 1995–2011). We see that the portfolio
constructed using our methodology delivers an economically and significantly positive alpha in
both sub-periods as well as over the entire sample. In comparison, both alternative methodologies
fail to deliver significantly positive alphas in one of the two sub-periods. Our portfolio also delivers
superior performance based on all performance measures, again in both sub-periods and over the
entire sample. To be specific, over the entire sample from 1980 to 2011, our portfolio has an
annualized alpha of 2.80% with information ratio 0.69, while for the FDR portfolio we calculate
α̂ = 2.01% with information ratio 0.47, and for the ‘normal’ portfolio we calculate α̂ = 1.71%
with information ratio 0.38. Hence, compounded over the 32 years in the period 1980–2011, our
portfolio generates an additional 53% (80%) in return in excess of the benchmarks relative to the
FDR portfolio (the normal portfolio).24

24We note that a classical statistical test of the null that our portfolio’s alpha equals that of the alternatives is not
informative: assuming a true difference equal to our point estimate of the difference in portfolios’ alphas, we calculate
that the power of a test with size of 5% would be just 15%, far below any acceptable level to be useful. In Bayesian
terms, the posterior probability that our portfolio’s alpha is higher than that of the FDR portfolio is 84%, and rises
to 92% for the comparison with the normal portfolio.
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Finally, we compare the performance of quantile-based portfolios for the methodologies that
estimate the distribution of skill, i.e., the hierarchical models, in order to conduct an out-of-sample
analysis of how well each methodology estimates the skill distribution. At the beginning of each
month in 1980–2011, we use the preceding 5 years of returns to estimate the 4-factor model using
each methodology, then we sort funds into ten quantiles based on the posterior mean alpha, and we
hold these quantile-based portfolios until the end of the month. In the online appendix, we present
various measures of performance for each portfolio. We find that the slope of performance going
from the bottom to the top quantile is steeper for the portfolios constructed using our methodology
than for those constructed using the alternatives. In particular, the portfolio that buys the funds in
the top and sells the funds in the bottom quantile has OLS α̂ = 3.23% per year for the hierarchical
normal model and α̂ = 4.29% for our methodology, with the difference in α̂ being statistically
significant at the 1% level. These results suggest that our methodology can successfully identify
funds at the tails (both the right and the left tail) of the skill distribution.

6.2 Optimal asset allocation
An application of our improved fund-level inference is in asset allocation. Here, we study the
optimal decision of an investor who allocates wealth between the risk-free asset, the benchmark
portfolios, and a single mutual fund. This is not intended as a complete analysis of asset allocation
to mutual funds or as investment advice, as it ignores load fees, taxes, leverage, and the potential
to invest in multiple funds. Rather, we seek to compare how optimal allocation in this simplified
setting varies with the methodology used to estimate fund skill, in order to get a sense of how
economically different the methodologies can be. In particular, we compare the optimal portfolios
derived using our methodology to those derived using i) the methodology which estimates parame-
ters fund-by-fund hence does not incorporate information sharing across funds, and ii) a hierarchical
model which assumes alphas are normally distributed hence ignores specification uncertainty.

In the asset allocation problem we consider, an investor solves

max
wi ,wF

E
[
u (WT+1)

]
(3)

s.t. WT+1 = WT
(
1+ r f,T+1 + wiri,T+1 + F ′T+1wF

)
,

where W is wealth; T is the last month in the sample; wi and wF are portfolio weights on fund i and
the benchmark portfolios; r f is the return of the risk-free asset, ri the net return of fund i in excess
of r f , and F the returns of the benchmark portfolios; and u is the constant relative risk aversion
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(CRRA) utility.25 To solve this problem, we use numerical optimization to find the weights that
maximize the mean of u(WT+1) across 10 million draws of WT+1. For the fund-by-fund approach,
assuming that the returns of the benchmark portfolios and fund i are jointly normal, the mean is
taken with respect to the distribution N

(
µ̂i,F , 6̂i,F

)
where µ̂i,F , 6̂i,F are the maximum likelihood

estimates of the returns’ mean and covariance. For the hierarchical methodologies, the mean is
taken with respect to the posterior predictive density p

(
ri,T+1,FT+1

∣∣ r,F), where r and F collect
all the returns of all funds and the benchmark portfolios.26

First, we solve the allocation problem for each fund that is active at the end of our sample
period, and we pick the ‘best’ fund and its corresponding optimal portfolio, which yields the
maximal expected utility among all portfolios across all funds. In Table 9 we present, for each
methodology, the ticker symbol of the best fund and the optimal weight on it. We also present the
certainty equivalent (CE) gain from this portfolio relative to one that invests only in the risk-free
asset and the benchmarks. We see that the best funds and their optimal allocations as well as
the associated CE gains differ across methodologies for almost all levels of risk aversion ρ. The
average gain (across levels of ρ) is 33 basis points per month for the fund-by-fund approach, 18
basis points for the hierarchical normal model, and 26 basis points for our model; these differences
are economically very significant. Overall, both in terms of the optimal portfolios and in terms of
the economic gain associated with these portfolios, the results from our methodology lie between
those from the alternative approaches. This is because, focusing on the best-performing funds, the
fund-by-fund methodology estimates fund return distributions with higher means as there is no
learning across funds, hence no shrinkage toward the population mean. The hierarchical normal
model, on the other hand, yields fund return distributions with lower means as it is not flexible
enough to adequately fit the right tail of the alpha distribution.

To see this more clearly, we compare across estimation methodologies the optimal portfolio
weights on a specific fund. We choose the Sequoia fund as the subject of the analysis, because it
was the top-performing fund in 2011 according to the financial press, and is therefore likely to be
relevant to investors.27 The results in Table 10 show that the optimal weights on this fund differ

25This problem is similar to that in Kandel and Stambaugh (1996) and Jones and Shanken (2005). Following these
studies, we impose wi ≥ 0, wF ≥ 0, and wi + w

′

F 1 ≤ 0.99 to avoid expected utility equaling −∞. Also, we fix r f
at 6% per year, which is close to its mean over our sample period.

26For details on how to make draws from this predictive density, see Section C.8 of the online appendix.
27This ranking, from Bloomberg (2011), excludes funds with assets below $250 million and funds requiring a

minimum investment above $100,000, and is based on performance from January 1 to December 2 of 2011; the Sequoia
fund topped the ranking with a total return of 12.1% over the evaluation period.
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widely across estimation methodologies. For our methodology, the optimal investment varies from
full (for ρ = 0) to about 50% (for ρ = 1 to 5). For the fund-by-fund methodology, the optimal
investment is as high as twice that using our methodology, while for the hierarchical normal model,
the optimal investment for ρ=0 is none (versus full for our methodology) while for other ρs it
is close to half that using our methodology.28

Finally, we calculate the certainty equivalent loss (according to our estimates) if we ignore
information sharing and/or specification uncertainty in the portfolio formation, i.e., if we select the
best fund and the optimal weights using one of the alternative models instead of our model. The
results in Table 11 show that, as expected, the loss is higher when using the fund-by-fund approach
than when using the hierarchical normal model, and that the loss is generally decreasing with risk
aversion. Importantly, for risk aversions ρ = 0 through 2, the loss is economically significant
at more than 10 basis points per month for both models. Furthermore, for intermediate levels
of risk aversion (ρ = 1 and 2), this loss has similar magnitude for both models, indicating that
incorporating specification uncertainty, i.e., allowing for unrestricted learning across funds, is of
similar importance to allowing for some learning under the normality assumption.

7 Additional results

In this section, we repeat our estimation using subgroups of funds with different investment ob-
jectives, funds that are active during different subperiods, as well as fund returns before fees and
expenses. We also conduct a post-estimation analysis of the relation between capital flows and
estimated alphas, to check if capital is directed toward funds with superior performance and how
this affects subsequent performance.

28It is notable that, with the hierarchical normal model, the optimal allocation to the Sequoia fund for ρ=0 is zero,
while for higher ρ it first increases and then decreases. As we have explained, this model is not flexible enough to
adequately capture the tails of the alpha distribution, so it substantially shrinks the alphas of top-performing funds,
including Sequoia, toward the mean, making them seem less appealing. A risk-neutral investor (ρ = 0) fully invests in
the risky asset with the highest return; for the hierarchical normal model, this is one of the benchmarks, not the Sequoia
fund to which he therefore allocates no wealth. A risk-averse investor seeks to diversify hence invests in Sequoia,
and an even more risk-averse investor seeks to invest in safer assets hence invests less in Sequoia.
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7.1 The distribution of skill by fund investment objective

Here, we estimate the skill distribution for groups of funds that follow different investment strate-
gies. For this purpose, we utilize a restricted data set that contains funds covered by the Thomson
database and linked to CRSP through MFLINKS, because as is generally accepted, Thomson pro-
vides more consistent investment objective information over time and across funds. The restricted
data set contains 1,865 funds classified into three investment categories: Growth & Income (405
funds), Growth (1,230 funds), and Aggressive Growth (230 funds). We present summary statistics
for the characteristics of funds in this restricted sample in the online appendix.

The results in Table 12 show that the Aggressive Growth (AG) category has the highest pro-
portion of positive- and the lowest proportion of negative-alpha funds (24% and 40%), followed
by the Growth (G) category (14% and 66%) and the Growth & Income (GI) category (10% and
76%). While these proportions are consistent with previous findings that AG funds have superior
performance (e.g., Grinblatt and Titman, 1989), the percentiles in Table 13 reveal that the propor-
tions do not tell the whole story. By estimating the entire alpha distribution for each investment
group, we find that the one for AG funds has much fatter tails, both left and right, than those for
the other groups. For example, we find that 10 times more AG funds than GI funds have α > 2%
but also that 10 times more AG funds than GI funds have α < −4%, per year. Thus, we conclude
that investments in AG funds have larger upside but also larger downside.

Regarding the distributions of the factor loadings, in Figure 8 we see that there is significant
variation both within and across investment objectives. For the posterior mean loading on all
factors, there is an ordering from GI, to G, to AG funds, which indicates that the classification
scheme broadly captures differences in investment strategies that are reflected in funds’ factor
loadings. But, as we will show in Section 8.2, we find little correlation between alpha and the factor
loadings, so the differences in performance between funds with different investment objectives
are not simply due to differences in their factor loadings.

7.2 The prevalence of short-term skill and its evolution over time

In the baseline estimation of our model, we assume that fund skill and the population distribution
from which it is drawn are both constant over time. However, skill may change, e.g., because the
manager changes, and the population distribution may change, e.g., because the stock market is
becoming more efficient or due to regulatory changes. The same is true for the other model param-
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eters, like the factor loadings. Here, we repeat our baseline analysis for sample subperiods, which
enables us to relax the assumption that skill and other model parameters are constant throughout
the whole sample, though at the cost of an increase in statistical error as we necessarily use less
information in each estimation.

We consider skill to be constant in the short term, and we estimate our model using 5-year
rolling windows starting from the period 1975–1979 and ending in 2007–2011, advancing one
month at a time. In Figure 9, we show the evolution of short-term performance. We see that the
proportions of zero-, negative-, and positive-alpha funds are almost equal until the early 1990s,
and subsequently the proportion of negative-alpha funds increases at the expense of the other two
types. Similarly, the estimated alpha distribution is quite stable until the early 1990s, but afterward
it becomes more concentrated and many quantiles switch from positive to negative values.29

7.3 Analysis of gross-of-expenses returns
Here, we re-estimate our baseline model using gross returns (before fees and expenses, but after
transaction costs), which we compute by adding to each fund’s monthly net returns the monthly
equivalent of its annual expense ratio, as reported by CRSP. This analysis enables us to examine
if the distribution of gross-of-expenses alphas under the assumed asset pricing model is consistent
with the hypothesis that the stock market is sufficiently efficient that risk-adjusted returns after
transaction costs equal zero.

In Table 14, we present the estimated proportions of funds with zero, negative, and positive
alpha, and in Table 15 we present various percentiles of the estimated distribution of alpha (the
distribution of the factor loadings is as before). We find that a significant proportion of funds, 22%,
have an excess return of zero, 44% of funds generate positive excess returns, while 34% generate
negative excess returns. Our results suggest that, conditional on the asset pricing model, there
are significant market inefficiencies, which close to half the funds can exploit. These results are
very different from the ones obtained from a fund-level regression analysis. For example, Barras,

29Pastor, Stambaugh and Taylor (2015) use a fund-by-fund analysis to find a similar pattern in the evolution of the
average alpha across funds. Their statement that “funds have become more skilled over time” does not contradict
our finding, since they define skill differently, as alpha adjusted for fund and industry size, i.e., the alpha on the first
dollar invested in the fund when there are no other funds in the industry. Assuming no other changes in the industry,
they show that while funds’ ability to generate alpha would have increased over time if competition in the mutual
fund industry had remained at 1980 levels, increased competition has actually reduced their ability to generate alpha,
which is consistent with our results.
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Scaillet and Wermers (2010) find that 85% of funds have zero alpha, 5% have negative alpha, and
10% have positive alpha before expenses, which would imply that the market is generally efficient,
with few and not easily exploitable inefficiencies.

Comparing the proportions estimated using returns before and after expenses, we see that, as
expected, the proportion of funds with negative (positive) alpha before expenses is lower at 34%
vs. 78% (higher at 44% vs. 13%) than that after expenses. Our estimates also imply that half
the funds with positive alpha charge fees above the rents they generate, about a fifth (the 9% of
funds with zero net-of-expenses alpha) capture the rents they generate, and a third leave money
on the table. It is noteworthy that the fund-by-fund approach fails to categorize funds on the basis
of returns before and after expenses in a consistent manner. For example, Barras, Scaillet and
Wermers (2010) find that 85% of funds have zero alpha before expenses, while 75% have zero
alpha after expenses, which is contradictory given that expenses are almost always nonzero. This
is a further indication that the fund-by-fund approach can be overly conservative.

7.4 Fund flow analysis
Our finding that most funds have negative alpha and very few have zero alpha net of fees and
expenses suggests that the mutual fund industry is not at a zero-alpha long-run equilibrium (see
Berk and Green, 2004). Here, we examine whether the forces discussed by Berk and Green (2004)
are at work, namely whether investors direct capital toward funds with good past performance and
whether funds exhibit decreasing returns to scale in deploying their skill.

For each fund in our sample, we compute the annual net flow of capital as the percentage increase
in total net assets in excess of the net investment gains. Each year, we sort funds into quintiles based
on their annual flows, and we calculate the performance of each quintile in the previous and in the
subsequent 5-year period. We measure fund performance using i) the posterior probability of having
a positive alpha, ii) the posterior probability of having a negative alpha, and iii) the posterior mean
of alpha, all relative to the 4-factor model and estimated using our methodology. In Panel A (B) of
Table 16, we present the past (future) performance of each flow quintile, averaged across all 5-year
non-overlapping periods in our sample (for the results for each period separately, see Section C.11
in the online appendix). In Panel A, we see strong evidence that investors direct capital toward funds
with better past performance, as funds in higher flow quintiles have significantly better performance
in the period prior to the flow measurement. For example, the average alpha prior to flow measure-
ment is −0.19% per year for funds in the top flow quintile versus −0.82% for funds in the bottom
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quintile. Comparing for each quintile its past performance in Panel A with its future performance
in Panel B, we also see evidence that funds that experience capital outflows (inflows) exhibit higher
(lower) performance subsequently. For example, for funds in the bottom flow quintile there is an av-
erage increase of 0.34% in annualized alpha between the periods prior to and subsequent to the flow
measurement, while for funds in the top flow quintile there is a decrease of 0.41% in alpha.30 Inter-
estingly, however, this force seems to push funds toward negative rather than zero alpha, suggesting
that convergence to an equilibrium in which most funds have alpha equal or close to zero is unlikely
to occur soon. In the online appendix, we present a regression analysis which yields similar results.

8 Robustness checks

In this section, we conduct the following robustness checks: i) we conduct a prior sensitivity
analysis, ii) we allow model parameters to be correlated, iii) we allow for time-varying market risk
exposures, iv) we examine whether our results are driven by our distributional assumptions about
the factor loadings and the factor model errors, v) we relax the assumption of independent factor
model errors, and vi) we consider variations for the distributions of zero and nonzero alphas. We
briefly discuss our results here, and we present related tables and figures in the online appendix.

8.1 Prior sensitivity analysis

Here, we conduct a prior sensitivity analysis and show that our main results are robust to alternative
priors (see Table 17, and also Section C.12 in the online appendix).

Our baseline prior for the number, K− and K+, of negative and positive components in the skill
distribution is the Poisson, p (K ) ∝ 1

K ! , truncated at K−max=K+max=4. We vary both the functional
form (from Poisson to uniform, i.e., p(K )= 1

Kmax
) and the truncation point (from 4 to 6), and we

estimate our model using various combinations of the two. As expected, the posterior probabilities
of mixtures with more components are slightly higher with the uniform prior, but overall, the effects
of these variations on the posterior estimates of population proportions and percentiles are small.

Our baseline prior for the population proportions, π , is the symmetric Dirichlet D
(
π
)

with
π = 1, which is an uninformative uniform over all values of π . Fruhwirth-Schnatter (2006) shows

30Performance may partially persist even in the presence of decreasing returns to scale, because investors may be slow
to direct capital toward (away from) funds with good (poor) performance. This may explain why, in Panel B, we observe a
small difference between the bottom and top flow quintile in performance in the 5-year period after the flow measurement.
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that the D (1) prior may lead to a high risk of choosing too many components, and suggests using
the D (4) prior instead. Using the latter, we find that the posterior is concentrated to a smaller
number of components but the change is small. The changes in the percentiles of the estimated
skill distribution are also small. We also repeat our estimation replacing the symmetric D (1)
prior with the asymmetric D (1, 3, 3) prior which overweights low values for the proportion of
zero-alpha funds; in the former case, the marginal prior on the proportion of zero-alpha funds has
the Beta distribution B (1, 2) with mean 0.33 while in the latter it has distribution B (1, 6) with
mean 0.14. Again, our results are quite robust to this change.

We also vary the deep parameters governing the prior of the population mean and variance
of the nonzero components of the alpha distribution. Since these are hyperparameters at a second
hierarchical layer, we find that they have a trivial effect on the posteriors.

Finally, we analyze the sensitivity of the estimated skill density, i.e., the posterior predictive
density, on the prior predictive density. This analysis is different from the above in that, instead
of focusing on varying the marginal priors of the population parameters, it focuses on varying
the prior predictive density of alpha itself, which compounds all the marginals. We find that a
drastic change in the prior predictive density — from one in which the mass is concentrated very
close to zero to one in which the mass is concentrated far from zero — has almost no effect on
the posterior predictive density.

8.2 Dependence between model parameters

In our baseline specification, we assume that fund-specific skill αi , factor loadings βi , and error
precision hi are drawn independently. However, a fund’s alpha may be related to some aspect of its
investment strategy, hence possibly to its risk exposure. It may also be related to its error precision:
As noted by Jones and Shanken (2005), if skilled managers identify mispricings across a wide
range of stocks, we might expect a positive correlation between αi and hi , while if they generate
alpha by focusing on a few stocks and forgo diversification, we might expect a negative correlation;
or maybe funds that closely follow their benchmarks have both larger hi and smaller absolute value
of αi . To study this issue, in this section we allow for a full correlation matrix between all model
parameters, that is, we assume that αi , βi , and hi are drawn from a multivariate mixture distribution.

For tractability, we do not tackle model specification uncertainty here, rather we use the model
with the highest posterior probability, i.e., with K−=2 negative and K+=1 positive mixture compo-
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nents. We propose that the density of ϕi :=
(
αi , β

′
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)′ is p

(
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})
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,

where
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q
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α , f q} in Equation 2. Specifically, the density
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from which we can derive the { f q} using the Jacobian, and where fN is the normal density.31

We find that the proportions of zero-, negative-, and positive-alpha funds (15%, 65%, and 20%)
are not very different from those we estimate in the specification with no correlation (14%, 71%,
and 15%) in the model with K− = 2 and K+ = 1 negative and positive components. Furthermore,
we find that the estimated distribution of α is similar to that in the model without correlation, with
some mass having shifted from negative to positive values. While we see that the distributions of
the βs and h are different across types, as we explain in Section 8.4, the distributional assumption
about the βs (and h) has no material effect on the fund-level posteriors of these parameters and,
hence, on the fund- and population-level posteriors of α. Finally, we find that the correlation
between α and β and between α and h is small, with posterior mean estimates below 0.1 for
most pairwise correlations. Overall, we conclude that the simplifying assumption that alphas,
factor loadings, and error precision are uncorrelated does not significantly affect our main results.
Detailed results are presented in Section C.13 of the online appendix.

8.3 Conditional asset pricing model
Here, we examine the sensitivity of our results to using the conditional version of the Carhart (1997)
4-factor model, where funds’ risk exposures are allowed to vary with the state of the economy as
proxied by predetermined public information variables (see Ferson and Schadt, 1996). We allow
for time-varying loadings on the market factor Mt , i.e.,

ri t = αi + F ′t βi +
(
Mt · C ′t−1

)
γi + εi t ,

31To allow for dependence, we assume multivariate normality, so hi is log-normal instead of Gamma as in Section 2.
This should have little effect on our results since these distributions are similar, and also we have sufficient fund-level
information to estimate hi accurately so the population shape should not affect the posteriors.
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where γi is the coefficient vector for the conditional term, Ct−1 is the vector of lagged deviations
of the conditioning variables from their time-series means, and the conditioning variables are:
i) the one-month T-bill rate; ii) the dividend yield of the CRSP value-weighted stock index; iii)
the term spread, proxied by the yield difference between a constant-maturity 10-year Treasury
bond and a three-month T-bill; and iv) the default spread, proxied by the yield difference between
Moody’s Baa- and Aaa-rated corporate bonds.32

As expected, using the conditional specification, we find a higher proportion of negative-alpha
funds (81% vs. 78%) and a smaller proportion of positive-alpha funds (11% vs. 13%) than with
the unconditional one. However, the general shape of the estimated distribution remains unchanged.
Detailed results are presented in Section C.14 of the online appendix. In unreported results, we
also use the CAPM and the Fama and French (1993) 3-factor model, for which, as expected, we
find a slightly lower (higher) proportion of funds with negative (positive) alpha.

8.4 Distributional assumptions about errors and factor loadings

Here, we examine whether our estimated alpha distribution is affected by our distributional as-
sumptions about the fund return errors and the factor loadings in Equation 1.

In the baseline model, we assume that fund-specific errors εi t are normal with fund-specific
precision hi drawn from a Gamma. This implies that the marginal distribution for the pooled errors
is a t distribution, which is a symmetric distribution with fat tails. Since it incorporates heterogeneity
across funds and fat tails, our assumption is appropriate both for studying the performance of
heterogeneous funds and for robust analysis. However, it does not account for possible asymmetries
in the distribution of the pooled errors nor for non-normalities in the fund-specific errors, so it could
affect our results. To study this issue, first we examine whether we observe significant skewness in
the distribution of the estimated residuals, ε̂i t := ri t − α̂i − Ft β̂i ,∀i, t , pooled across funds, where
α̂i and β̂i denote the posterior means of our estimates. Various robust skewness measures are close
to zero, indicating very little skewness.33 Second, we use the robust Jarque-Bera test (Brys, Hubert
and Struyf, 2004) to simultaneously test for each fund the null that its estimated residuals are
normal. Accounting for false discoveries, we reject the normality null for only 3% of funds. Finally,

32The T-bill rate is from CRSP; the dividend yields are constructed from returns with and without dividends, also
from CRSP; and the term and default spreads are derived from Federal Reserve data.

33Sample skewness is 0.80, but it is sensitive to even a single outlier, so we compute robust measures based on the
25/75 and the 0.5/99.5 quantiles and find them to be 0.01 and 0.02. These indicate almost no skewness, as they are
smaller than the corresponding measures for, e.g., the χ2 (1000), which is approximately normal.
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we use a forward-search procedure (Coin, 2008) to identify and remove for each fund the residuals
that deviate from the values of an equal-sized normal random sample; in total, we remove 1.8% of
all observations. Re-estimating our model using this reduced data set for which our distributional
assumption for the error should be even more accurate, we find very similar estimates to those
using the entire data set, so we conclude that our results are not driven by this assumption.34

In the baseline model, we also assume that fund-specific factor loadings βi are normal. While
this necessarily implies that our posterior for β is normal, it has no appreciable effect on the results
that mainly interest us. The reason is that the data contain sufficient information to estimate each
fund’s β precisely, so information sharing across funds has a very small effect on the posteriors of
fund-level βs and, therefore, of fund-level αs and their population distribution. To demonstrate this,
first we find that our posterior estimates are very similar with the OLS estimates of fund-level βs,
which do not assume normality and do not induce information sharing and shrinkage, with most pair-
wise correlations at 0.99. Second, we repeat our estimation, this time imposing through the priors a
large variance in the population distribution for βs, effectively eliminating shrinkage in the posterior
estimates of fund-level βs. Comparing our estimation results in this “no shrinkage” case with our
baseline results, we observe that they are very similar, suggesting that the normality assumption has
a very limited impact. For more details on this analysis, see Section C.15 of the online appendix.

8.5 Cross-sectional error dependence
Here, we relax the assumption of cross-sectional independence in the factor model errors by al-
lowing their covariance to have the linear factor structure proposed by Jones and Shanken (2005).
Specifying the error of fund i as εi t := G ′tδi + ξi t , Equation 1 becomes

ri t = αi + F ′t βi + G ′tδi + ξi t ,

where G t is the month t vector of latent error factors which are assumed to be normal with mean
0 and variance 1 (without loss of generality) and orthogonal to each other and to the factors Ft ; δi

are fund-specific error factor loadings; and ξi t∼N
(

0, h∗−1
i

)
is the cross-sectionally independent

part of the error term, with h∗i a fund-specific precision. The benchmark is still assumed to be
correctly specified, so αi can still be interpreted as a measure of skill. In one specification, we

34Specifically, in this reduced data set, the sample skewness of the pooled residuals is 0.03 and the non-robust
Jarque-Bera test against normality is only rejected for 3% of funds. The alpha distribution estimated from this data
set has slightly fatter tails, especially in the left. This is because the excluded observations have large residuals, so
the posteriors of fund-level alphas have lower variance hence exhibit less shrinkage toward the mean, and so more
alphas are placed in the tails.
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assume that there is a single latent factor on which all funds may load. In another specification,
we allow for additional dependence across funds that follow the same strategy by introducing 4
latent error factors: one on which all funds may load, and three strategy-specific factors on which
only funds that follow a specific investment strategy (Growth & Income, Growth, and Aggressive
Growth, respectively) may load.

Our baseline model is quite robust to this cross-sectional error dependence. Using, e.g., the
model with one latent factor, we estimate that the proportions of zero-, negative-, and positive-alpha
funds are 8%, 79%, and 13%, and the distribution of negative-alpha funds shifts slightly to the
left. For detailed results, see Section C.16 of the online appendix.

8.6 Variations to model specification
Finally, we estimate two variations of our model for the alpha distribution. The first retains the
distinction between zero- and nonzero-alpha funds, but ignores the distinction between negative-
and positive-alpha funds, i.e., it assumes αi is drawn from a mixture that consists of a point mass at
0 and a normal component. The second retains the distinction between negative- and positive-alpha
funds, but blurs the distinction between zero- and nonzero-alpha funds by replacing the point mass
at zero with a narrow normal centered at zero. First, we find that our estimate of the point mass
at zero is not driven by our assumption that nonzero alphas are drawn from two non-overlapping
distributions. That is, our finding that a small mass of funds, if any, have zero alpha is robust
to this alternative specification for the distribution of nonzero alpha. Second, we find that our
estimated percentiles of the alpha distribution are not driven by our model’s feature to allow for
a point mass at zero. For detailed results, see Section C.17 of the online appendix.

9 Concluding discussion

In this paper, we propose a novel methodology that allows for a rich and flexible representation of
the cross-sectional distribution of skill. We model the skill distribution using a three-component
mixture that consists of a point mass at zero and two components, one with negative and one with
positive support. To avoid restrictive parametric assumptions, we tackle specification uncertainty
by modeling the negative and the positive components of the skill distribution as mixture densities
across an unknown, but estimable, total number of components. This approach enables us to jointly
estimate the proportions of skilled/unskilled funds and the cross-sectional distribution of skill in
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a unified framework, as well as to use the full information in the data without imposing restrictive
parametric assumptions. Thus, as we show in simulations and out-of-sample tests, we are able
to improve inference at the population and at the fund level.

We find that the skill distribution is highly non-normal, exhibiting fat tails and negative skewness,
and that while the majority of funds is classified to the negative-alpha group, there is a substantial
proportion that generate positive alpha (net of fees and expenses). These results could, for example,
be useful in investigating the rationality of investing in mutual funds. They also have significant
implications for asset allocation, as the optimal portfolios calculated using our methodology are
substantially different from those calculated using the fund-by-fund regression approach or the
hierarchical model that assumes alphas are normal. Quantifying economically these implications for
asset allocation, we find that allowing for unrestricted learning across funds has similar incremental
economic value to allowing for some learning under the normality assumption in the first place.

In closing, we note that our methodology can be applied more widely to a variety of issues
in finance. First, it can be used to estimate the proportions of different types in a population,
e.g., different types of investors (in terms of risk preferences, sophistication, investment style,
etc.). Second, it can be used to flexibly estimate the population distribution of an unobserved
characteristic (e.g., firm or bank quality), especially if this distribution is likely to exhibit complex
features. Third, it enables the sharing of information across individual units without restrictions,
which can be particularly useful in settings in which data as well as prior information is limited;
for example, it can be used to obtain improved inference for individual-level trading behavior.
Finally, it can be used to conduct complex model selection analyses, e.g., to select the asset pricing
model that best explains some test assets.
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Figure 1: Representation of the baseline mixture model as a directed acyclic graph. Squares represent
observed quantities and circles represent unknown model parameters that need to be estimated.
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Table 1: Simulations — Estimated Proportions of Fund Skill Groups

Estimation results from simulations in which nonzero alphas (expressed as annualized percentages) are
generated from discrete distributions (in Panel A), a normal distribution (in Panel B), and log-normal
distributions (in Panel C). The data generating processes (DGPs) within each panel differ in the proportions
π0, π−, π+ of funds with zero, negative, and positive alpha, respectively, and/or in the distance of nonzero
alphas from zero. For each DGP, we report the true proportions of funds with zero, negative, and positive
alpha, and the average (across 50 simulations) estimated proportions from the fund-by-fund methodology
that relies on hypothesis tests — with and without the FDR correction — and from our methodology.

Panel A: Discrete nonzero alphas
α ∼ π0δ0 + π

−δx− + π
+δx+

π0 π− π+

DGP D-1: Unequal proportions, large nonzero alphas True 75.0 23.0 2.0
π0
= 0.75, π− = 0.23, π+ = 0.02 No FDR 75.4 18.9 5.7

x− = −3.2, x+ = 3.8 FDR 76.5 20.1 3.4
Our Model 75.2 22.8 2.0

DGP D-2: Equal proportions, small nonzero alphas True 34.0 33.0 33.0
π0
= 0.34, π− = 0.33, π+ = 0.33 No FDR 75.6 10.1 14.3

x− = −1.2, x+ = 1.8 FDR 70.2 12.5 17.3
Our Model 30.6 35.0 34.4

Panel B: Normal nonzero alphas
α ∼ π0δ0 + π

−,+ fN
(
α
∣∣µ, σ 2 )

π0 π− π+

DGP N -1: Large variance True 90.0 5.8 4.2
π0
= 0.90, π−,+ = 0.10 No FDR 82.2 9.7 8.1

µ = −1.45, σ 2
= 72 FDR 86.8 7.5 5.7

Our Model 90.8 5.2 4.0

DGP N -2: Small variance True 35.0 45.8 19.2
π0
= 0.35, π−,+ = 0.65 No FDR 66.8 24.6 8.6

µ = −1.45, σ 2
= 7.2 FDR 63.4 28.7 7.9

Our Model 41.6 41.6 16.8

Panel C: Log-normal nonzero alphas
α ∼ π0δ0 + π

− f −
(
α
∣∣θ−α )+ π+ f +

(
α
∣∣θ+α )
π0 π− π+

DGP L-1: Nonzero alphas far from zero True 45.0 28.0 27.0
π0
= 0.45, π− = 0.28, π+ = 0.27 No FDR 46.1 27.3 26.6

f − (α) = flnN (|α| |2, 0.2 ) for α < 0 FDR 45.4 27.6 27.0
f + (α) = flnN (|α| |2, 0.2 ) for α > 0 Our Model 44.9 28.1 27.0

DGP L-2: Nonzero alphas close to zero True 45.0 28.0 27.0
π0
= 0.45, π− = 0.28, π+ = 0.27 No FDR 62.7 19.1 18.2

f − (α) = flnN (|α| |1, 0.35 ) for α < 0 FDR 59.4 20.6 20.0
f + (α) = flnN (|α| |1, 0.35 ) for α > 0 Our Model 43.8 28.5 27.7

DGP L-3: Our posterior True 9.0 78.0 13.0
π0
= 0.09, π− = 0.78, π+ = 0.13 No FDR 75.5 19.7 4.8

f − (α) = 0.74 · flnN (|α| |0.05, 0.23 ) FDR 72.6 26.0 1.4
+0.26 · flnN (|α| |0.05, 1.25 ) for α < 0 Our Model 9.7 79.7 10.6

f + (α) = flnN (|α| |−0.53, 0.98 ) for α > 0
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Figure 2: Quantile-Quantile plots of posterior alphas estimated using our methodology and using the hierar-
chical normal model versus simulated alphas. The blue cross marks plot the quantiles (0.5th through 99.5th),
and the solid red line plots the 45◦ line. In Panels (a) and (b) we plot for DGPs C-1 and C-2, respectively,
the quantiles of the posterior alpha distribution estimated using our model against the quantiles of the
simulated alpha distribution. In Panels (c) and (d) we plot for DGPs C-1 and C-2, respectively, the quantiles
of the posterior alpha distribution estimated using the hierarchical normal model against the quantiles of the
simulated alpha distribution. In DGP C-1, alphas are drawn from a normal distribution, in particular α ∼
N (−2.5, 4). In DGP C-2, alphas are drawn from a negatively skewed and fat-tailed distribution, in particular
α ∼ π N f N

(
α
∣∣θ N
α

)
+ π− f −

(
α
∣∣θ−α )+ π+ f +

(
α
∣∣θ+α ) where π N

= 0.10, π− = 0.80, π+ = 0.10, f N
=

fN (· |0, 0.1), f − (α) = flnN (|α| |0.1, 0.5) for α < 0, and f + (α) = flnN (|α| |0.1, 0.5) for α > 0. For
clarity, we note that the quantiles plotted on the vertical axis of each plot correspond to the estimated posterior
predictive distribution of alpha, not to the posterior means of the alphas for the funds in each simulated sample.
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Table 2: Proportions of Fund Types

Results on the posterior distributions of the population proportions of funds with zero, negative, and positive
alpha, estimated using our baseline model presented in Section 2 with returns net of expenses for 3,497
funds. The 95% Highest Posterior Density Interval (HPDI) is the smallest interval such that the posterior
probability that a parameter lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard
errors for the posterior mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.09 0.07 0.07 [0.00 , 0.26] 0.00
π− 0.78 0.78 0.06 [0.66 , 0.88] 0.00
π+ 0.13 0.12 0.04 [0.06 , 0.22] 0.00

Table 3: Number of Mixture Components

The joint posterior probability for the number of mixture components K− in the alpha distribution of
negative-alpha funds and the number of mixture components K+ in the alpha distribution of positive-alpha
funds, estimated using our baseline model presented in Section 2 with returns net of expenses for 3,497
funds.

K+ = 1 K+ = 2 K+ = 3 K+ = 4
K− = 1 0.09 0.03 0.00 0.00
K− = 2 0.31 0.23 0.02 0.00
K− = 3 0.13 0.11 0.01 0.00
K− = 4 0.03 0.04 0.00 0.00
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Figure 3: Visual representation of the prior and posterior predictive distribution of annualized 4-factor
alphas (expressed as a percent), from our model in Section 2 estimated using net returns for 3,497 funds.
In Panel (a), we plot the prior predictive density corresponding to our baseline prior specification (in dotted
red) and to an alternative (in dash-dotted magenta). For clarity, we do not represent the point mass at zero
alpha, which has probability 0.33 for the baseline and 0.14 for the alternative. For details on these prior
specifications, see Section A in the appendix and Section C.12 in the online appendix. In Panel (b), we
plot the posterior predictive density (which is almost exactly the same for both priors); the vertical arrow
at zero alpha has arbitrary length and represents a point mass with probability 0.09. In Panel (c), we plot
a histogram of values simulated from this estimated distribution, where bar heights are normalized so the
area of each bar represents the probability of the corresponding interval.
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Table 4: Percentiles of Estimated Skill Distributions — Our Model vs. Alternatives

Percentiles of the distribution of annualized alpha (expressed as a %) estimated from our model and the hierarchical
normal model, and the empirical distribution of fund-by-fund OLS alphas. For the hierarchical normal and our model,
we also present each percentile’s 95% HPDI. All distributions are estimated with net returns for 3,497 funds.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

OLS -13.28 -10.42 -5.96 -4.20 -2.71 -1.89 -1.31 -0.81 -0.27 0.39 1.20 2.39 3.53 6.87 7.93

Hierarchical Normal Model
Posterior Mean -3.55 -3.28 -2.54 -2.16 -1.68 -1.34 -1.05 -0.78 -0.51 -0.22 0.12 0.59 0.98 1.72 1.99

2.5% -3.76 -3.48 -2.70 -2.28 -1.79 -1.44 -1.13 -0.85 -0.58 -0.30 0.02 0.46 0.83 1.50 1.73

97.5% -3.32 -3.07 -2.38 -2.02 -1.58 -1.28 -0.98 -0.71 -0.44 -0.14 0.21 0.71 1.12 1.90 2.19

Our Model
Posterior Mean -6.60 -5.01 -2.62 -1.96 -1.42 -1.12 -0.96 -0.72 -0.55 -0.36 0.00 0.30 0.87 2.35 3.24

2.5% -8.97 -6.28 -3.06 -2.22 -1.57 -1.28 -1.08 -0.90 -0.71 -0.52 -0.31 0.00 0.40 1.70 2.28

97.5% -5.11 -3.91 -2.18 -1.73 -1.28 -0.98 -0.75 -0.58 -0.39 0.00 0.09 0.69 1.24 3.13 4.50
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Figure 4: Quantile-Quantile plots of estimated alpha distributions from alternative methodologies. The blue crosses
plot the quantiles (0.5th through 99.5th), and the red solid line plots the 45◦ line. In Panel (a), we plot the quantiles
of the OLS alpha estimates versus those of the alpha distribution estimated from our model. In Panel (b), we plot the
quantiles of the distribution estimated from the hierarchical normal model versus those of the distribution estimated
from our model. We note that the quantiles for our model (horizontal axis, Panels a and b) and the hierarchical
normal model (vertical axis, Panel b) correspond to the respective estimated distribution, not the posterior means for
the funds in the sample. All estimations use net returns for 3,497 funds. Alpha is annualized and expressed as a %.
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(a) Densities of estimated alphas (negative).
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Figure 5: Estimated densities of annualized 4-factor alphas (expressed as a percent), for negative (in Panel a) and positive (in
Panel b) alphas, zoomed in to show tail detail. In both panels, we plot the estimated density from our model (in solid blue) and the
estimated density from a hierarchical normal model (in dashed red). For all plots, returns net of expenses for 3,497 funds are used.
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Table 5: Robust Measures of Skewness and Tail Weight for the Skill Distribution

Resuts on robust quantile-based measures of skewness and tail weight that rely on 99% of the range of the distribution
of alpha estimated using our baseline model with returns net of expenses for 3,497 funds. The measure of skewness
is as in Groeneveld and Meeden (1984) — S := [Q(1−p)+Q(p)−2Q(0.5)]/[Q(1−p)−Q(p)] — and the measures of left
and right tail weight are as in Brys, Hubert, and Struyf (2006) — LTW := −

[
Q
(

1−p
2

)
+Q( p

2 )−2Q(0.25)
]
/
[

Q
(

1−p
2

)
−Q( p

2 )
]

and RTW :=
[

Q
(

1+q
2

)
+Q(1− q

2 )−2Q(0.75)
]
/
[

Q
(

1+q
2

)
−Q(1− q

2 )
]

— where Q(x) is the x th quantile of the distribution, and we
use p=0.005 and q=0.995. Measures are reported as deviations from the corresponding values for the normal
distribution. We present point estimates, the 95% HPDI, and the NSE.

Mean Median Std.Dev. 95% HPDI NSE

Skewness −0.20 −0.20 0.10 [−0.38 ,−0.00] 0.00
Left Tail Weight 0.34 0.34 0.03 [ 0.28 , 0.40] 0.00
Right Tail Weight 0.27 0.29 0.08 [ 0.08 , 0.37] 0.00

Table 6: Measures of Distance Between the Normal and Our Estimated Skill Distribution

Resuts on robust measures of distance between the normal and our estimated skill distribution estimated using our
baseline model with returns net of expenses for 3,497 funds. The Hellinger distance between densities fX , fY is
H 2 := 1 −

∫ √
fX (s) fY (s)ds, and takes values in [0, 1]. The Wasserstein distance between densities fX , fY is

W := inf fXY E [‖X − Y‖] where fXY is any joint density with marginals fX , fY , and takes values in [0,+∞). For
the Wasserstein distance, we present values that rely on 99% of the range of the distribution, i.e., we exclude the
extreme tails to make the distance measure robust. For each measure, we present point estimates, the 95% HPDI,
and the NSE.

Mean Median Std.Dev. 95% HPDI NSE

Hellinger Distance
(
H2

)
0.11 0.10 0.04 [0.05 , 0.22] 0.00

Wasserstein Distance
(
W
)

0.22 0.22 0.04 [0.15 , 0.31] 0.00
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Figure 6: Estimated population densities of factor loadings from our baseline model with net returns for 3,497 funds.

Table 7: Percentiles of Estimated Distributions of Factor Loadings

Percentiles of estimated distributions of factor loadings from our model estimated with net returns for 3,497 funds.

Percentiles
0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

βM 0.40 0.46 0.60 0.68 0.77 0.84 0.90 0.95 1.00 1.06 1.13 1.22 1.30 1.44 1.49
βSMB -0.60 -0.52 -0.31 -0.20 -0.07 0.03 0.11 0.19 0.27 0.35 0.45 0.58 0.69 0.90 0.98
βHML -0.86 -0.77 -0.54 -0.41 -0.27 -0.16 -0.07 0.02 0.11 0.20 0.31 0.46 0.58 0.81 0.89
βUMD -0.26 -0.23 -0.16 -0.12 -0.08 -0.04 -0.02 0.01 0.04 0.06 0.10 0.14 0.18 0.25 0.28
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Table 8: Out-of-sample Portfolio Performance

Out-of-sample performance measures for portfolios that select funds using the FDR methodology, a
hierarchical model in which fund αs are normal, and our methodology. At the beginning of each month in
1980–2011, we use the preceding 60 months of fund returns to estimate the 4-factor model using each
methodology, and we form and hold until the end of the month equal-weighted portfolios of funds that are
estimated to have high probability of having a positive α (see Section 6.1 for details). During months in
which all funds have a low probability of having a positive α, we select funds whose posterior mean α
(for the hierarchical methodologies) or OLS t-statistic (for the FDR methodology) is in the top 1% among
all funds in the data set for the preceding 60 months. For each portfolio we construct, we use its monthly
portfolio returns from 1980 to 1995 (Panel A), from 1995 to 2011 (Panel B), and from 1980 to 2011 (Panel
C) to estimate its annualized OLS 4-factor alpha α̂ and residual standard deviation σ̂ε (both expressed as
percents), α̂ t-statistic, Information Ratio (α̂/σ̂ε), mean and standard deviation (both expressed as percents)
of its return in excess of the risk-free rate, and its Sharpe Ratio (mean/std. dev. of excess return).

Panel A: 1st–half Panel B: 2nd–half Panel C: Full sample

FDR Normal Our Model FDR Normal Our Model FDR Normal Our Model

α̂ 2.45 2.22 3.36 1.54 1.92 2.24 2.01 1.71 2.80
α̂ t-statistic 2.73 2.74 3.51 1.27 1.70 2.28 2.67 1.97 3.68
σ̂ε 3.05 3.03 3.73 4.99 4.20 3.74 4.25 4.45 4.08
Information Ratio 0.80 0.73 0.90 0.31 0.46 0.60 0.47 0.38 0.69
Mean Return 8.52 8.49 10.59 7.04 6.51 7.21 7.74 7.45 8.81
Std. dev. Return 15.90 14.83 15.47 17.48 12.41 14.46 16.73 13.59 14.93
Sharpe Ratio 0.54 0.57 0.68 0.40 0.52 0.50 0.46 0.55 0.59
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(a) Alpha of conservative portfolios.
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(b) Alpha of aggressive portfolios.

Figure 7: Plots of the evolution over time of the estimated annualized alpha (expressed as a percent) for
portfolios that select funds using our estimation methodology (in solid blue lines), a hierarchical model
in which fund alphas are normally distributed (in dashed magenta lines), and the FDR methodology
(in dotted cyan lines). At the beginning of each month from January 1980 through December 2011, we
use the preceding 60 months of fund returns to estimate the 4-factor model using each methodology,
and we form portfolios by selecting funds with high estimated probability of having a positive alpha
(see Section 6.1 for more details). During months in which all funds have a low probability of having
a positive alpha, portfolios in Panel (a) remain empty while portfolios in Panel (b) select funds with high
posterior mean alpha (for the two hierarchical methodologies) or high OLS t-statistic for alpha (for the
FDR methodology). For each portfolio, we estimate by OLS regression its 4-factor alpha at each month
t from January 1990 to December 2011, using the monthly portfolio returns from January 1980 through
month t , and we plot the evolution of these alphas over time.
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Table 9: Optimal Asset Allocation — Best Fund

Comparison of the optimal portfolio that invests in one mutual fund, the risk-free asset, and the 4 bench-
marks, for a CRRA investor with various levels of risk aversion ρ, and for various estimation models: the
methodology that performs fund-by-fund OLS regressions (Panel A), the hierarchical normal model (Panel
B), and our model (Panel C). We present the ticker symbol of the best mutual fund, the weight w∗ on it,
and the certainty equivalent (CE) gain (in basis points per month) from the optimal portfolio that invests
in the best mutual fund relative to one that invests only in the risk-free asset and the 4 benchmarks.

Panel A: OLS Panel B: Normal Panel C: Our Model

ρ Ticker w∗
OLS CE Gain Ticker w∗

N CE Gain Ticker w∗
our CE Gain

0 FSCSX 0.99 46.08 PBMBX 0.99 30.50 ARTMX 0.99 36.17
1 VGHCX 0.99 33.57 PBMBX 0.76 17.27 ARTMX 0.99 29.11
2 VGHCX 0.99 30.55 LRSCX 0.62 13.65 ARTMX 0.72 22.60
5 VGHCX 0.74 21.18 FLPSX 0.52 10.14 FLPSX 0.60 16.29

Table 10: Optimal Asset Allocation — Sequoia Fund

For a portfolio that invests in the risk-free asset, the 4 benchmarks, and the best-performing fund of
2011 (the Sequoia fund according to Bloomberg), we present optimal weights on this fund for a CRRA
investor with various levels of risk aversion ρ, and various estimation models. Weights w∗

OLS
, w∗

N
, and w∗

our

denote optimal weights according to the methodology that performs fund-by-fund OLS regressions, the
hierarchical normal model, and our model.

ρ w∗
OLS w∗

N w∗
our

0 0.99 0.00 0.99
1 0.99 0.32 0.56
2 0.77 0.42 0.55
5 0.63 0.29 0.48

Table 11: Optimal Asset Allocation — Economic Significance

Certainty equivalent (CE) loss, for a CRRA investor with various levels of risk aversion ρ, from ignoring
information sharing and/or model specification uncertainty in determining the optimal fund and weights in
the portfolio that invests in the risk-free asset, the 4 benchmarks, and a mutual fund. We present CE loss
(measured in basis points per month) from using fund-by-fund OLS regressions, i.e., ignoring information
sharing, and from using the hierarchical normal model, i.e., ignoring model specification uncertainty.

Certainty Equivalent Loss

ρ OLS Normal

0 42.56 6.97
1 16.04 12.78
2 12.59 10.54
5 9.99 0.37
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Table 12: Proportions of Fund Types — By Investment Objective

Results on the posteriors of the population proportions of funds with zero, negative, and positive
alpha, estimated with returns net of expenses using the K− = 2,K+ = 1 model separately for
funds classified to the 3 investment objectives: Growth & Income (Panel A), Growth (Panel B),
and Aggressive Growth (Panel C). The estimation uses data on 1,865 funds for which we have
investment objective information from the Thomson database.

Panel A: Growth & Income Objective Panel B: Growth Objective Panel C: Aggressive Growth Objective

Mean Median Std.Dev. Mean Median Std.Dev. Mean Median Std.Dev.

π0 0.14 0.13 0.10 0.20 0.20 0.12 0.36 0.35 0.21
π− 0.76 0.76 0.09 0.66 0.65 0.09 0.40 0.41 0.16
π+ 0.10 0.08 0.06 0.14 0.13 0.09 0.24 0.22 0.13

Table 13: Percentiles of Estimated Skill Distribution — By Investment Objective

Percentiles of the estimated population distributions of annualized alpha (expressed as a percent),
estimated with returns net of expenses using the K− = 2, K+ = 1 model separately for funds
classified to the three investment objectives: Growth & Income, Growth, and Aggressive Growth.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Growth & Income -3.75 -3.15 -2.04 -1.66 -1.34 -1.14 -0.96 -0.80 -0.63 -0.40 0.00 0.00 0.47 1.32 1.71
Growth -4.90 -4.10 -2.56 -1.99 -1.45 -1.12 -0.87 -0.64 -0.40 0.00 0.00 0.10 0.48 2.28 3.62
Aggressive Growth -17.81 -12.26 -4.35 -2.36 -0.96 -0.36 0.00 0.00 0.00 0.00 0.30 1.12 1.99 4.63 6.25

0 0.5 1 1.5
0

1

2

βM

−1 0 1
0

1

2

βSMB

−1 0 1
0

1

2

βHML

−0.5 0 0.5
0

2

4

βUMD

Figure 8: Estimated population densities for the factor loadings, estimated separately for Growth
& Income funds (plotted in solid blue lines), Growth funds (plotted in dash-dotted green lines),
and Aggressive Growth funds (plotted in dashed red lines). All densities are estimated using the
K− = 2, K+ = 1 model with two negative and one positive component for the distribution of
alpha, with returns net of expenses, and using data on 1,865 funds for which we have investment
objective information from the Thomson database.
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Figure 9: Evolution over time of the proportions of fund types and the percentiles of the
estimated alpha distribution, with short-term skill. In Panel (a), we plot posterior means of
the population proportions of zero-alpha funds (dashed blue line), negative-alpha funds (dotted
violet line), and positive-alpha funds (solid cyan line). In Panel (b), we plot various percentiles
(5th, 10th, 20th, . . . , 80th, 90th, 95th) of the estimated distribution of annualized alpha (expressed
as a percent); higher percentiles are plotted above lower percentiles and, for clarity, line style
is alternated between solid and dotted. Estimation is performed at the beginning of each month
from January 1980 to December 2011, using data from the preceding 60 months. All estimations
use returns net of expenses in the K− = 2, K+ = 1 model with two negative and one positive
component for the distribution of alpha.

Table 14: Proportions of Fund Types — With Gross Returns

Results on the posterior distributions of the population proportions of funds with zero, negative,
and positive alpha, estimated using our baseline model from Section 2 with gross returns for 3,497
funds. The 95% HPDI is the smallest interval such that the posterior probability that a parameter
lies in it is 0.95. NSE stands for autocorrelation-adjusted numerical standard errors for the posterior
mean estimate of each parameter.

Mean Median Std.Dev. 95% HPDI NSE

π0 0.22 0.20 0.14 [0.01 , 0.53] 0.00
π− 0.34 0.34 0.10 [0.16 , 0.53] 0.00
π+ 0.44 0.44 0.08 [0.28 , 0.58] 0.00

Table 15: Percentiles of Estimated Skill Distribution — With Gross Returns

Percentiles of the distribution of annualized alpha (expressed as a percent) estimated using our
baseline model with gross returns for 3,497 funds. We present point estimates and the 95% HPDI.

Percentiles

0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Posterior Mean -4.28 -3.07 -1.25 -0.76 -0.35 -0.12 0.00 0.00 0.21 0.58 0.96 1.55 2.15 3.84 4.78

2.5% -5.76 -4.00 -1.53 -0.99 -0.58 -0.32 -0.15 -0.05 0.00 0.06 0.76 1.32 1.89 3.17 3.74
97.5% -2.92 -1.89 -0.94 -0.51 0.00 0.00 0.00 0.25 0.48 0.78 1.16 1.74 2.41 4.57 5.89
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Table 16: Fund Flows and Fund Performance

Quintile analysis of the relation between fund flows and past and future fund performance. At the
end of each non-overlapping 5-year period from 1975 to 2010, we sort funds into quintiles (Q1
through Q5) based on their flows in the subsequent year, and in Panel A we report the average
performance and average flows of each flow quintile across all periods. At the beginning of each
non-overlapping 5-year period from 1980 to 2010, we sort funds into quintiles (Q1 through Q5)
based on their flows in the previous year, and in Panel B we report the average performance and
average flows of each flow quintile across all periods. We measure fund performance using i) the
posterior probability (expressed as a percent) of having a positive alpha, ii) the posterior probability
(expressed as a percent) of having a negative alpha, and iii) the posterior mean of alpha (expressed
as an annualized percent), all estimated from our model with 4 factors; we report results for each
of these measures of performance in separate lines labeled accordingly. We also report the average
fund flow (expressed as a percent of beginning-of-year total net asset value, per year) for funds
in each quintile. In columns labeled ‘Q5−Q1’, we report the difference between the top and the
bottom flow quintile. ∗/∗∗/∗∗∗ indicate significance of this difference at the 10%/5%/1% levels.

Panel A: Flows and Past Performance

Flow Quintiles
Q1 Q2 Q3 Q4 Q5 Q5−Q1

Positive-α probability (as a %) 16.88 19.04 20.08 23.69 26.89 10.01 ∗∗∗

Negative-α probability (as a %) 54.64 51.26 48.29 44.99 42.62 −12.03 ∗∗∗

α (as a %/year) −0.82 −0.69 −0.50 −0.34 −0.19 0.63 ∗∗∗

Flows (as a %/year) −30.03 −14.15 −6.46 8.25 116.38 146.41 ∗∗∗

Panel B: Flows and Future Performance

Flow Quintiles
Q1 Q2 Q3 Q4 Q5 Q5−Q1

Positive-α probability (as a %) 22.76 21.25 22.48 24.16 21.51 −1.25 ∗∗∗

Negative-α probability (as a %) 45.50 47.34 46.75 45.70 48.84 3.34 ∗∗∗

α (as a %/year) −0.48 −0.58 −0.54 −0.42 −0.60 −0.12 ∗∗∗

Flows (as a %/year) −28.04 −12.67 −2.34 17.59 178.43 206.47 ∗∗∗
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Table 17: Population Proportions and Percentiles of Estimated Alpha Distribution — Prior Sensitivity Analysis

Prior sensitivity analysis of estimated posterior means of population proportions of zero-, negative-, and positive-alpha funds, and of percentiles
of the estimated alpha distribution (expressed as an annualized percent). Panel A shows estimations with π = 1 and Panel B shows estimations
with π = 4, where π ∼ D

(
π
)

is the symmetric Dirichlet prior for the population proportions π . In each of these panels, we vary the maximum
number of negative and positive mixture components in the skill distribution, K−max and K+max, from 4 to 6, the prior for the number of mixture
components from p (K ) ∝ 1

K ! to p (K ) = 1
Kmax

, and the prior hyperparameters K κα
from 10 to 100, 3K α

from 1 to 100, λ3α from 1 to 0.2,
and 33α

from 1 to 0.02. In the leftmost column, we indicate how each prior specification differs from the baseline prior specification presented
in Section A of the appendix. Panel C shows two estimations with the asymmetric prior π ∼ D (1, 3, 3) for the population proportions: one
uses the baseline values for all other prior parameters, and one uses alternative values (κκα = −6, K κα

= 0.5, and λK α
= 4) which effect a

large change to the prior predictive density for α. All estimations use returns net of expenses for 3,497 funds.

Proportions Percentiles

π0 π− π+ 0.5th 1st 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 99th 99.5th

Panel A: Estimations with π ∼ D (1)

Baseline 0.09 0.78 0.13 -6.60 -5.01 -2.62 -1.96 -1.42 -1.12 -0.91 -0.72 -0.58 -0.36 0.00 0.30 0.87 2.35 3.24
large K−max, K+max, p (K ) = 1

Kmax
0.10 0.77 0.13 -6.68 -5.05 -2.62 -1.95 -1.41 -1.12 -0.91 -0.73 -0.56 -0.37 0.00 0.31 0.89 2.32 3.16

large K−max, K+max, p (K ) ∝ 1
K ! 0.07 0.80 0.13 -6.55 -5.03 -2.67 -1.98 -1.41 -1.11 -0.89 -0.71 -0.54 -0.37 0.00 0.30 0.87 2.39 3.30

p (K ) = 1
Kmax

0.09 0.78 0.13 -6.61 -5.03 -2.62 -1.96 -1.41 -1.12 -0.91 -0.73 -0.56 -0.36 0.00 0.32 0.88 2.33 3.21

small K κα 0.09 0.79 0.12 -6.50 -4.97 -2.63 -1.97 -1.42 -1.12 -0.90 -0.72 -0.54 -0.35 0.00 0.26 0.84 2.36 3.27

large 3Kα 0.09 0.77 0.14 -6.52 -4.87 -2.56 -1.95 -1.44 -1.16 -0.94 -0.75 -0.56 -0.33 0.00 0.29 0.80 2.35 3.27

small λ3α 0.08 0.78 0.14 -6.48 -5.01 -2.67 -1.98 -1.42 -1.11 -0.90 -0.71 -0.54 -0.36 0.00 0.30 0.85 2.36 3.27

small 33α 0.07 0.80 0.13 -6.52 -5.03 -2.68 -1.99 -1.41 -1.10 -0.88 -0.70 -0.53 -0.36 0.00 0.27 0.82 2.42 3.38

Panel B: Estimations with π ∼ D (4)

Baseline 0.13 0.75 0.12 -6.41 -5.03 -2.71 -2.01 -1.43 -1.11 -0.88 -0.70 -0.52 -0.31 0.00 0.23 0.77 2.42 3.40
large K−max, K+max, p (K ) = 1

Kmax
0.12 0.76 0.12 -6.50 -5.03 -2.67 -1.98 -1.41 -1.10 -0.89 -0.70 -0.53 -0.34 0.00 0.24 0.81 2.43 3.40

large K−max, K+max, p (K ) ∝ 1
K ! 0.13 0.75 0.12 -6.44 -5.04 -2.71 -2.01 -1.43 -1.11 -0.88 -0.70 -0.52 -0.32 0.00 0.22 0.77 2.41 3.39

p (K ) = 1
Kmax

0.13 0.75 0.12 -6.50 -5.01 -2.67 -1.99 -1.43 -1.12 -0.90 -0.71 -0.53 -0.32 0.00 0.23 0.78 2.43 3.42

small K κα 0.13 0.75 0.12 -6.42 -5.03 -2.72 -2.02 -1.43 -1.11 -0.88 -0.70 -0.52 -0.31 0.00 0.21 0.77 2.43 3.41

large 3Kα 0.13 0.74 0.13 -6.51 -5.03 -2.66 -2.00 -1.45 -1.15 -0.92 -0.72 -0.52 -0.26 0.00 0.22 0.71 2.32 3.30

small λ3α 0.13 0.75 0.12 -6.43 -5.04 -2.72 -2.02 -1.43 -1.11 -0.88 -0.70 -0.52 -0.31 0.00 0.22 0.77 2.40 3.37

small 33α 0.12 0.76 0.12 -6.52 -5.09 -2.73 -2.02 -1.42 -1.10 -0.87 -0.69 -0.51 -0.32 0.00 0.21 0.74 2.38 3.37

Panel C: Estimations with π ∼ D (1, 3, 3)

Baseline 0.07 0.80 0.13 -6.47 -5.03 -2.69 -1.99 -1.41 -1.10 -0.88 -0.70 -0.53 -0.36 0.00 0.29 0.82 2.40 3.37
Alternative 0.08 0.80 0.12 -6.55 -5.05 -2.67 -1.98 -1.41 -1.10 -0.89 -0.71 -0.54 -0.37 0.00 0.29 0.92 2.39 3.26
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Appendix

A Prior specification

Here, we present the priors for the population parameters, whose joint prior density is35

p
(
K−

)
× p

(
K+

)
× p (π)×

{ I∏
i=1

p (ei |π)

}
×

{ I∏
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p (hi |κh, λh )
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q
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)
. (A.1)

We have defined p((αi , βi )| ·), p(hi | ·) in Section 2.2, and it follows from the definition of ei as a group

allocation vector that it has the multinomial M(1, π) distribution.

For the population proportions π , we use the symmetric Dirichlet prior π ∼D(1), which implies

an uninformative uniform distribution over all possible values of π .

For the population mean and variance of the factor loadings and the nonzero components of the

alpha distribution, we use the independent Normal-inverse-Wishart distribution, i.e.,

µ
q
a,k

∣∣κα, K α ∼ N
(
κα, K α

) (
V q
α,k

)−1 ∣∣λα,3α ∼W
(
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α
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µβ
∣∣κβ, K β ∼ N
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V−1
β

∣∣λβ,3β ∼W
(
λβ,3

−1
β

)
,

where κα, K α, λα, 3α and κβ , K β , λβ , 3β are hyperparameters. We set λα=1 and, to gain flexibility,

for φ :=
(
κα, K α,3α

)
we introduce an additional hierarchical layer such that φ is a random param-

eter to be estimated from the data and depends on deeper hyperparameters.36 In particular, we use

κα

∣∣∣κκα, K κα
∼ N

(
κκα, K κα

)
, K−1

α

∣∣∣λK α
,3K α

∼W
(
λK α
,3−1

K α

)
, and 3α

∣∣∣λ3α ,33α
∼W

(
λ3α,3

−1
3α

)
,

where we set κκα = 0, K κα
= 100, and λK α

=3K α
=λ3α =33α

= 1 to make the priors weak. For the

hyperparameters for the mean and variance of the factor loadings we use fixed values because, with

only one pair
(
µβ,Vβ

)
, we cannot estimate them from the data. In particular, we set κβ=0, K β=100,

λβ= rank
(
Vβ
)
, and 3β= I .

For K− and K+, a common choice (e.g., Stephens, 2000) is the Poisson P(1) such that p(K )∝ 1
K ! ,

which penalizes mixtures with more components. For convenience of computation and presentation, this

distribution is often truncated; we truncate to K−max=K+max=4.

35Note that we impose some natural conditional independencies which simplify the density, e.g.,
p
(

ei

∣∣∣K−, K+, π,
{(
µ

q
α,k , V q

α,k

)}
,
(
µβ , Vβ

)
, κh , λh , {αi , βi , hi }

)
= p ( ei |π).

36We fix λα to avoid over-complicating the analysis, but it could also be made random.
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For the parameters of the Gamma distribution of the error precisions hi , we use the Miller (1980) prior

p
(
κh, λh

∣∣∣p, q, r , s
)
∝

pκh−1e−
q
λh

[0 (κh)]r λ
κhs+2
h

,

with 0 the gamma function and p, q, r , s the hyperparameters. We set these to correspond to a ‘prior

sample’ of 3 observations, one each at the low, middle, and high end of the distribution of the ĥi estimated

from fund-level OLS regressions of Equation 1; in particular, we use p=2× 109, q=105, r=s=3.37

B Estimation algorithm

Here, we describe the MCMC algorithm used to estimate the model in Section 2. Before we proceed,

we define parameters ρi :=
(
αi , β

′

i

)′ and regressors xt :=
(
1, F ′t

)
, and vertically stack for each i all the

ri t , xt , εi t into ri , X i , εi respectively. Then we vertically stack ri , ρi , εi , and create a block diagonal

matrix from the X i so Equation 1 becomes r= Xρ+ε.

We are interested in making draws from the joint posterior distribution

p
(

K−, K+, π, {ei } , φ,
{
θ

q
ρ,k

}
, {ρi } , κh, λh, {hi }

∣∣ r, X
)
,

which is proportional to the likelihood p(r |X,{ρi },{hi }) times the joint prior in Equation A.1 (augmented

with φ, as explained in Section A). We use an MCMC algorithm to construct a Markov chain whose

stationary distribution converges to the posterior. For a model with known numbers of negative and

positive components K−, K+, we use a Gibbs sampler to make draws. For a model with unknown

numbers of components, we use the Reversible Jump MCMC methodology to explore the model space.

In the following sections, we first describe the sampler that draws from the posterior in the former case,

and then we present the additional steps necessary to explore the model space in the latter case.

B.1 Without model specification uncertainty

In the first iteration of the sampler, we initialize all parameters; starting values do not matter if the

sampler explores the whole posterior (see Geweke, 1999). Repeating the estimation with a variety of

37In the paper, we also present results from a hierarchical normal model; here we briefly discuss the priors we use for this
model. The priors for parameters that are common between the two models (i.e., βi ,

(
µβ , Vβ

)
, hi , κh , and λh) are the same in

both cases, as presented above. In the hierarchical normal model, αi ∼ N (µα, Vα) and the priors for (µα, Vα) also take the
Normal-inverse-Wishart form presented above, with the difference that there is no additional hierarchical layer for φ, since there
is only one pair (µα, Vα). Instead, we set κα=0, Kα=100, λα=1, and3α=10−5. Setting Kα large and λα small makes the
priors very weak and renders the choice of κα immaterial and the choice of3α less influential. The value of3α is chosen to be
of a similar order of magnitude as our a priori belief of Vα (corresponding to a standard deviation of 1% to 5% in annual terms);
a sensitivity analysis that varies the value of 3αby several orders of magnitude shows that the posterior is robust to this value.
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starting values drawn from the prior, our results are always very similar.

Given the values of the parameters π , {ei }, φ,
{
θ

q
ρ,k

}
, {ρi }, κh , λh , {hi } in iteration m, in iteration

m + 1 the Gibbs sampler sequentially draws from the following conditional posteriors: p
(
π
∣∣{ei }

(m)),
p
(
{ρi } , {ei }

∣∣∣r, X, {hi }
(m) , π (m+1),

{
θ

q
ρ,k

}(m)), p
({
θ

q
ρ,k

} ∣∣{ei }
(m+1) , {ρi }

(m+1) , φ(m)
)
, p
(
φ
∣∣∣{θq

ρ,k

}(m+1)
)

,

p
(
{hi }

∣∣∣r, X, {ρi }
(m+1) , κ (

m)
h , λ(

m)
h

)
, and p

(
κh, λh

∣∣{hi }
(m+1) ).

These conditional posteriors follow from the assumptions in Sections 2.2, 2.3. In particular, sup-

pressing iteration superscripts for convenience, we have the following:

• Letting π=π · 1+
I∑

i=1
ei , the conditional posterior for π has the Dirichlet distribution:

π |{ei } ∼ D (π) .

• The conditional posterior for (ρi , ei ) is proportional to the product of the likelihood, which follows

from Equation 1 and the distribution of the error, and the joint prior density of ρi and ei which

follows from the assumptions in Section 2.2, i.e.,38

p
(
ρi , ei

∣∣ri , X i , hi , π,
{
θ

q
ρ,k

})
∝ p (ri |X i , ρi , hi ) · p

(
ρi
∣∣ei ,

{
θ

q
ρ,k

})
· p (ei |π ) .

This does not have a convenient form, so we use the Metropolis-Hastings algorithm to make draws.

That is, we use a random-walk candidate generating density q (see Chib and Greenberg, 1995) to

generate a candidate
(
ρ ′i , e′i

)
(taking care that, e.g., α′i < 0 if fund i is allocated to the negative-alpha

funds), which is then accepted or rejected probabilistically so that the Markov chain generally moves

toward areas of the parameter space with high posterior. The probability of accepting the candidate

draw
(
ρ ′i , e′i

)
is

min

{
p
(
ρ ′i , e′i

∣∣ri , X i , hi , π,
{
θ

q
ρ,k

})
q (ρi , ei )

p
(
ρi , ei

∣∣ri , X i , hi , π,
{
θ

q
ρ,k

})
q
(
ρ ′i , e′i

) , 1

}
.

• With independent Normal-inverse-Wishart priors, the conditional posterior for θq
ρ,k is

µ
q
ρ,k

∣∣{ei},{ρi},V
q
ρ,k,φ ∼N

(
κ

q
ρ,k,K

q
ρ,k

) (
V q
ρ,k

)−1∣∣{ei},{ρi},µ
q
ρ,k,φ ∼W

(
λ

q
ρ,k,
(
3

q
ρ,k

)−1
)

where, letting ρ̃i :=
(
ln |αi | , β

′

i

)′, the posterior hyperparameters are

K
q
ρ,k =

(
K−1
ρ +

(
V q
ρ,k

)−1

(
I∑

i=1

eq
i,k

))−1

3
q
ρ,k=3ρ+

I∑
i=1

eq
i,k

(
ρ̃i−µ

q
ρ,k

)(
ρ̃i−µ

q
ρ,k

)′
κ

q
ρ,k=K

q
ρ,k

(
K−1
ρ κρ+

(
V q
ρ,k

)−1
I∑

i=1

(
eq

i,k ρ̃i
))

λ
q
ρ,k = λρ +

I∑
i=1

eq
i,k,

38We present the algorithm for the more general case in which αi and βi are drawn jointly as ρi .
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with κρ,K ρ,λρ,3ρ the prior parameters and φ :=
(
κρ,K ρ,3ρ

)
random and drawn next.

• With p (φ) = p
(
κρ
)

p
(
K ρ

)
p
(
3ρ

)
, the conditional posterior for φ consists of:

κρ
∣∣{µq

ρ,k

}
, K ρ ∼ N

(
κκρ , K κρ

)
K−1
ρ

∣∣{µq
ρ,k

}
, κρ ∼W

(
λK ρ

,3
−1
K ρ

)
3ρ

∣∣{V q
ρ,k

}
∼W

(
λ3ρ ,3

−1
3ρ

)
,

where, with
(
κκρ, K κρ

)
,
(
λK ρ
,3K ρ

)
,
(
λ3ρ,33ρ

)
the prior parameters for κρ , K ρ , 3ρ :

K κρ
=

K−1
κρ
+ K−1

ρ

∑
q,k

1

−1

κκρ = K κρ

K−1
κρ
κκρ + K−1

ρ

∑
q,k

µ
q
ρ,k


λK ρ
= λK ρ

+

∑
q,k

1 3K ρ
= 3K ρ

+

∑
q,k

(
µ

q
ρ,k − κρ

) (
µ

q
ρ,k − κρ

)′
λ3ρ = λ3ρ + λρ

∑
q,k

1 33ρ = 33ρ
+

∑
q,k

[(
V q
ρ,k

)−1
]
.

• Letting κh,i=κh+
Ti
2 and 1

λh,i
=

1
λh
+
(ri−X iρi )

′(ri−X iρi )
2 , the conditional posterior for hi is

hi |ri , X i , ρi , κh, λh ∼ G
(
κh,i , λh,i

)
.

• The conditional posterior for (κh, λh) is

p (κh, λh |{hi }) ∝
pκh−1e−

q
λh

[0 (κh)]r λκhs+2
h

,

where p = p
∏I

i=1 hi , q = q +
∑I

i=1 hi , r = r + I , and s = s + I , and p, q, r , s are the prior

parameters for κh , λh . We make draws using the acceptance-rejection algorithm.

We note that, in mixture models, the posterior is invariant to permutations of the components’ labels, so

inference is problematic for parameters that are not invariant to component relabeling in the MCMC draws.

We circumvent this issue in two ways. First, we focus on inferences that are invariant to relabeling, e.g.,

on the population proportions π0, π−, π+, and the density of alpha and the factor loadings. Second, to

conduct inferences that are not invariant to relabeling, e.g., the distribution parameters
{(
µ

q
α,k, V q

α,k

)}
, we

achieve a unique labeling by retrospectively relabeling components in the MCMC draws so the marginal

posteriors of parameters of interest are close to unimodality (for a similar approach, see Stephens, 1997).

Thus, we do not need to impose artificial identifiability restrictions through priors, which do not guarantee

a unique labeling and may produce biased estimates (see Celeux, 1998).
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B.2 With model specification uncertainty

In this case, our estimation adapts the Reversible Jump MCMC method (Green, 1995; Richardson and

Green, 1997). We construct a Markov chain that lives on the space

20
×

⋃K−max

K−=1

⋃K+max

K+=1

(
MK−,K+ ×2

−

K− ×2
+

K+
)
,

with MK−,K+ the model with K− negative and K+ positive components, 20, 2−K− , 2+K+ the ranges

of ϑ0 :=π0, ϑ−K− :=
{(
π−k ,θ

−

k

)}
, ϑ+K+ :=

{(
π+k ,θ

+

k

)}
, and θq

k :=
(
µ

q
α,k,V

q
α,k

)
for q∈{−,+}. It makes moves

from a model, e.g.,
(
Mi, j ,ϑ

0,ϑ−i ,ϑ
+

j

)
, to another, e.g.,

(
Mi ′, j ′,ϑ

0,ϑ−i ′ ,ϑ
+

j ′

)
, designed to achieve detailed

balanced so it converges to the posterior.

To estimate this model, we add the following steps in each iteration of our algorithm:

1. With probability b−K−,K+, b+K−,K+ we propose to split in two a negative or positive component, respec-

tively; with probability d−K−,K+,d
+

K−,K+ we propose merging two components.

2. With probability b−K−,K+,b
+

K−,K+ we propose the birth of a negative or positive component; with

probability d−K−,K+,d
+

K−,K+ we propose the death of an empty component.

First, b−K−,K++b+K−,K++d−K−,K++d+K−,K+ = 1. Also, d−1,K+ = b−
K−max,K+

= d+K−,1 = b+
K−,K+max

= 0, because

merge/death and split/birth moves are not permitted when the number of components is minimal and max-

imal, respectively. Finally, we propose all other permitted moves with equal probability. We denote by

mh (M) the probability of proposing a specific move of type h ∈ {b, d,m, s}. For example, the probabil-

ity of merging two specific negative components is the probability d−K−+1,K+ of choosing to merge negative

components times the probability of picking these out of K− + 1 components, so mm
(
MK−+1,K+

)
=

d−
K−+1,K+

(K−+1)K−
. Similarly, ms

(
MK−,K+

)
=

b−
K−,K+

K− , mb
(
MK−,K+

)
= b−K−,K+ , md

(
MK−+1,K+

)
=

d−
K−+1,K+

K−0 +1
,

where K−0 + 1 is the number of empty negative components in model MK−+1,K+ .

For convenience, we let θ :=
(
0,
{
θ−k
}
,
{
θ+k
})′ and define for each fund i the categorical allocation vari-

able Si ∈
{
1, . . . , 1+ K− + K+

}
which corresponds to ei , i.e., Si = k ⇔ ei,k = 1; we collect all Si in S.

We present the split/birth move for negative components starting from a model MK−,K+ with pa-

rameters
(
ϑ0, ϑ−K−, ϑ

+

K+
)

and allocations S, and the merge/death move for negative components starting

from a model MK−+1,K+ with parameters
(
ϑ0, ϑ−K−+1, ϑ

+

K+
)

and allocations Ŝ.39 Moves for positive

components are formulated analogously.
39A ˆ denotes parameters in model MK−+1,K+ that are different from those in model MK−,K+ , while it is omitted for

parameters that only exist in model MK−+1,K+ ; e.g., we write Ŝ but ϑ−K−+1 rather than ϑ̂−K−+1.
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B.2.1 Split and merge moves

The split move involves the following:

• Choose a component k∗ to split to two new components, which we label k1 and k2.

• Draw random vector u and calculate proposal ϑ−K−+1 = gK−,K−+1
(
ϑ−K−, u

)
, where gK−,K−+1 must

ensure this move is reversible, i.e.,
(
ϑ−K−, u

)
=g−1

K−,K−+1

(
ϑ−K−+1

)
. Like Richardson and Green (1997),

we draw u=
(
u1, u′2

)′ from qK−,K−+1(u) := q1(u1)q2(u2) for some q1, q2, set π−k1
=u1π

−

k∗ , π
−

k2
=1−π−k1

and θ−k1
=g1

(
π−k∗, u1, θ

−

k∗, u2
)
, θ−k2
=g2

(
π−k∗, u1, θ

−

k∗, u2
)

such that the first two moments are preserved.

• Reallocate funds in k∗ to components k1, k2 using density q
(

Ŝ
∣∣S, ϑ0, ϑ−K−+1, ϑ

+

K+

)
.

• Accept the move with probability min{1,A}, where A is the product of these ratios:40

likelihood ratio =
∏

i
p
(
αi

∣∣∣θŜi

)/
p
(
αi
∣∣θSi

)
prior ratio =

p
(

Ŝ
∣∣∣ϑ0,ϑ−K−+1,ϑ

+

K+ ,MK−+1,K+
)

p
(
ϑ0,ϑ−K−+1,ϑ

+

K+
∣∣MK−+1,K+

)
p
(
MK−+1,K+

)
p
(
S
∣∣ϑ0, ϑ−K− , ϑ

+

K+ ,MK−,K+
)

p
(
ϑ0, ϑ−K− , ϑ

+

K+
∣∣MK−,K+

)
p
(
MK−,K+

)
proposal ratio =

q
(

S
∣∣∣Ŝ, ϑ0, ϑ−K− , ϑ

+

K+

)
qK−+1,K−

(
ϑ−K−

∣∣∣ϑ−K−+1

)
mm

(
MK−+1,K+

)
q
(

Ŝ
∣∣∣S, ϑ0, ϑ−K−+1, ϑ

+

K+

)
qK−,K−+1

(
ϑ−K−+1

∣∣ϑ−K− )ms
(
MK−,K+

) .
The reverse merge move involves the following:

• Choose a pair k1, k2 of components to be combined to form the new component k∗.

• Calculate a proposal ϑ−K− using
(
ϑ−K−, u

)
= g−1

K−,K−+1

(
ϑ−K−+1

)
.

• Reallocate to component k∗ funds belonging to k1 or k2.

• Accept the proposed move with probability min
{
1, 1

A

}
, where A is as defined above.

To calculate A, we determine all proposals. In a split move we reallocate fund i from k∗ to, e.g., k1 with

q
(

Ŝi=k1
∣∣Si=k∗, ϑ0, ϑ−K−+1, ϑ

+

K+

)
:=π−k1

p
(
αi

∣∣∣θ−k1

)
/
[
π−k1

p
(
αi

∣∣∣θ−k1

)
+π−k2

p
(
αi

∣∣∣θ−k2

)]
, so

q
(

Ŝ
∣∣S, ϑ0, ϑ−K−+1, ϑ

+

K+

)
=

∏
i :Si=k∗

πŜi
p
(
αi

∣∣∣θŜi

)
π−k1

p
(
αi
∣∣θ−k1

)
+ π−k2

p
(
αi
∣∣θ−k2

) .
In addition, using the Jacobian transformation, we calculate that

qK−,K−+1
(
ϑ−K−+1

∣∣ϑ−K− ) = qK−,K−+1 (u)
|det (J )|

1
(K− + 1)!

,

40We write, e.g., qK−,K−+1

(
ϑ−K−+1

∣∣∣ϑ−K− ) instead of qK−,K−+1

(
ϑ̂0, ϑ−K−+1, ϑ̂

+

K+

∣∣∣ϑ0, ϑ−K− , ϑ
+

K+

)
, because we only

propose changes to negative components. Also, instead of p
(
αi

∣∣∣ei ,
{(
µ

q
α,k , V q

α,k

)})
, we simply use p (αi |θk ) for the

density of αi for fund i allocated to component k with distribution parameters θk .
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with J :=
∂gK−,K−+1

(
ϑ−

K−
,u
)

∂
(
ϑ−

K−
,u
) =

∂
(
π−k1

,π−k2
,θ−k1

,θ−k2

)
∂(π−k∗ ,u1,θ

−

k∗ ,u2)
the Jacobian of the transformation

(
ϑ−K−, u

)
to ϑ−K−+1. In

a merge move, we choose S, θ−k∗ , π
−

k∗ deterministically, so the proposals are q
(

S
∣∣∣Ŝ, ϑ0, ϑ−K−, ϑ

+

K+

)
=1

and qK−+1,K−
(
ϑ−K−

∣∣ϑ−K−+1

)
=

1
K−! . Note that in qK−,K−+1 and qK−+1,K− we divide by

(
K−+1

)
! and K−!

— the number of ways in which we can order the negative components — due to the exchangeability

assumption for mixture components.

Using the pmf of the multinomial distribution for the (independent) allocations of funds to types,

and the fact that the allocations change, but the probabilities do not, we have

p
(

Ŝ
∣∣ϑ0, ϑ−K−+1, ϑ

+

K+,MK−+1,K+

)
p
(
S
∣∣ϑ0, ϑ−K−, ϑ

+

K+,MK−,K+
) =

∏
i :Si=k∗

πŜi

π−k∗
.

Also, using the density of the Dirichlet distribution π ∼ D
(
π
)
, we have

p
(
ϑ0, ϑ−K− , ϑ

+

K+
∣∣MK−,K+

)
=

π
π−1
0

∏
1≤k≤K−

(
π−k
)π−1 ∏

1≤l≤K+

(
π+l
)π−1

B
(
π · 11+K−+K+

)︸ ︷︷ ︸
p(π)

∏
1≤k≤K−

p
(
θ−k
∣∣φ) ∏

1≤l≤K+
p
(
θ+l
∣∣φ) ,

with 1K the unit vector with K elements and B (·) the multivariate beta function. Thus,

ln A =
∑

i :Si=k∗
ln

π
−

k1
p
(
αi

∣∣∣θ−k1

)
+π−k2

p
(
αi

∣∣∣θ−k2

)
π−k∗ p

(
αi
∣∣θ−k∗ )

+ ln
p
(
MK−+1,K+

)
p
(
MK−,K+

) + ln
d−K−+1,K+

b−K−,K+
+ ln

p
(
θ−k1

∣∣∣φ) p
(
θ−k2

∣∣∣φ)
p
(
θ−k∗
∣∣φ)

−ln B
(
π,
(
1+K−+K+

)
π
)
+
(
π−1

)
ln

(
π−k1
π−k2

π−k∗

)
− ln (q1(u1) q2(u2))+ ln

∣∣∣∣∣∣det

∂
(
π−k1
, π−k2

, θ−k1
, θ−k2

)
∂
(
π−k∗ , u1, θ

−

k∗ , u2
)
∣∣∣∣∣∣ .

Last, we determine proposals q1, q2 for u1, u2 and gK−,K−+1. We choose u1∼B (2, 2), u2,1∼B (1, 1),

u2,2∼B (1, 1), and the gK−,K−+1 (and implied g1, g2) from Richardson and Green (1997), which preserves

the mean µ and variance σ 2 before and after the split. Thus, |det (J )| = πk∗
∣∣µk1 − µk2

∣∣ σ 2
k∗

1−u2
2,1

u1(1−u1)u2,1
.

Inverting g1, g2, we can calculate u, πk∗, µk∗ , σ 2
k∗ given πk1 , πk2 , µk1 , µk2 , σ 2

k1
, σ 2

k2
.

B.2.2 Birth and death moves

In a birth move, we add a low-probability empty component as follows:

• Draw the probability π−k∗ of the new component k∗ from a proposal density q
(
π−k∗

∣∣MK−,K+
)

that

draws small values, e.g., π−k∗ ∼ B
(
1, 1+ K− + K+

)
.

• Rescale existing components’ probabilities using, e.g., π̂+k =π
+

k

(
1−π−k∗

)
for k 6=k∗.

• Draw the parameters θ−k∗ of the new component from a proposal, e.g., the prior p
(
θ−k∗
∣∣φ).
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In a death move, we remove an empty component — i.e., with no funds — if any:

• Randomly choose an empty component, labeled k∗, to remove.

• Rescale the probabilities of all other components so they sum to 1.

Birth and death moves form a reversible pair, so their acceptance probabilities are min {1, A} and

min
{
1, 1

A

}
, respectively, where A is as defined above, except that in the proposal ratio we now write

qK−+1,K−

(
ϑ0, ϑ−K−, ϑ

+

K+

∣∣∣ϑ̂0, ϑ−K−+1, ϑ̂
+

K+

)
and qK−,K−+1

(
ϑ̂0, ϑ−K−+1, ϑ̂

+

K+
∣∣ϑ0, ϑ−K−, ϑ

+

K+

)
because we

change all components, and md , mb replace mm , ms . Next, we calculate A.

No allocations Si change, so the likelihood ratio is 1. Also, working as above we find

p
(
Ŝ
∣∣∣ϑ̂0,ϑ−K−+1,ϑ̂

+

K+ ,MK−+1,K+
)

p
(

S
∣∣∣ϑ0, ϑ−K− , ϑ

+

K+ ,MK−,K+
) = ∏

1≤i≤I

πŜi

(
1− π−k∗

)
πSi

p
(
ϑ̂0,ϑ−K−+1,ϑ̂

+

K+

∣∣∣MK−+1,K+
)

p
(
ϑ0, ϑ−K− , ϑ

+

K+

∣∣∣MK−,K+
) =

p
(
π̂0, π̂

−

1 ,..., π̂
−

K− , π
−

k∗ , π̂
+

1 ,..., π̂
+

K+

)[ ∏
1≤k≤K−

p
(
θ−k

∣∣∣φ)] p
(
θ−k∗

∣∣∣φ)[ ∏
1≤l≤K+

p
(
θ+l

∣∣∣φ)]

p
(
π0, π

−

1 ,..., π
−

K− , π
+

1 ,..., π
+

K+

)[ ∏
1≤k≤K−

p
(
θ−k

∣∣∣φ)][ ∏
1≤l≤K+

p
(
θ+l

∣∣∣φ)] .

Using these, together with π̂0 = π0
(
1− π−k∗

)
, π̂−k = π−k

(
1− π−k∗

)
for 1 ≤ k 6= k∗ ≤ K−, π̂+l =

π+l
(
1− π−k∗

)
for 1 ≤ l ≤ K+, and the pmf of the multinomial, the prior ratio is

(
1− π−k∗

)I p
(
θ−k∗
∣∣φ) (π−k∗)π−1 (1− π−k∗)(1+K−+K+)π−(1+K−+K+)

B
(
π, (1+ K− + K+) π

) p
(
MK−+1,K+

)
p
(
MK−,K+

) .
Last, we calculate the proposal ratio. Allocations do not change, so q

(
S
∣∣∣Ŝ, ϑ0, ϑ−K−, ϑ

+

K+

)
= 1 and

q
(
Ŝ
∣∣∣S, ϑ̂0, ϑ−K−+1, ϑ̂

+

K+

)
=1. Also, qK−+1,K−

(
ϑ0, ϑ−K−, ϑ

+

K+

∣∣∣ϑ̂0, ϑ−K−+1, ϑ̂
+

K+

)
=

1
K−!K+! as there are K−!

and K+! ways to order the negative and positive components, while

qK−,K−+1

(
ϑ̂0, ϑ−K−+1, ϑ̂

+

K+
∣∣ϑ0, ϑ−K−, ϑ

+

K+

)
=

q
(
π−k∗, θ

−

k∗
)

|det (J )|
1

(K− + 1)!K+!
,

where, as in the split move, we use the Jacobian because we propose
(
ϑ̂0, ϑ−K−+1, ϑ̂

+

K+

)
indirectly and

divide by
(
K−+1

)
!K+! due to exchangeability. So the proposal ratio is

1
q
(
π−k∗

∣∣MK−,K+
)
· p
(
θ−k∗
∣∣φ)

(
K− + 1

)
d−K−+1,K+(

K−0 + 1
)

b−K−,K+

(
1− π−k∗

)1+K−+K+
,

where we use |det (J )|=
(
1−π−k∗

)1+K−+K+ , q
(
π−k∗, θ

−

k∗
)
=q

(
π−k∗

∣∣MK−,K+
)
· p
(
θ−k∗
∣∣φ). So

ln A = ln
p
(
MK−+1,K+

)
p
(
MK−,K+

) + (π − 1
)

lnπ−k∗ +
[
I +

(
1+ K− + K+

)
π
]

ln
(
1− π−k∗

)
− ln q

(
π−k∗

∣∣MK−,K+
)
− ln B

(
π,
(
1+ K− + K+

)
π
)
+ ln

(
K− + 1

)
d−K−+1,K+(

K−0 + 1
)

b−K−,K+
.
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